
Introduction

Prediction of unstable operating conditions is vital imporant
in machning preactice. The unstable phenomenon known as
chatter eventually leads to a tool damage and loss of work
surface. Machine tool operators often select the conservative
process parameters from the stability lobe diagrams.
Analytical prediction of stability in turning and boring is
well established with flexible cutting tool models. One of the
earliest models was developed by Merrit (1965). Later on,
the mechanics of instability was recognized by Tlusty and
Polacek (1963) and Tobias and Fishwick(1958). They
obseved the cutting forces have been dynamically influenced
by the modulated chip thickness. Tlusty and Polacek (1963)
model employed only one direction along the chip thickness
and it can be still effectively employed in straight turning
without inclination angles. Later many authors have shown
stability in with two dimensional models (Kaneko et al,
1984; Minis et al, 1990 and Rao and Shin 1999). Ozdagnalar
and Endres presented analytical stability analysis of multidi-
mensional cutting systems (Ozdoganlar and Endres 2000).
The more general model requires inclusion of oblique cut-
ting conditions and multidimensional dynamics for obtaining
accuracy. In this regards more recently Ozlu and Budak illus-
trated a multidimensional turning model for oblique cutting
(Ozlu and Budak 2007). This accounts relative tool motion
in both feed and rotation directions and also includes the
effects of nose radius on the chatter stability.

In all the above chatter analysis procedures a linear force-
model is used to assess the stability. These do not account the 

static feed variations  in regeneratin models. In practice force
various nonlinearly with feed and depth of cut. To study the
effect of nonlinear force. Zhang and Ni approximately
included the force-feed nonlinearity in by considering mod-
ulation phase difference in the process (Zhang and Ni 1995).
Landers and Ulsoy demonstarated the methods of handling
force-feed nonlinearity in chatter predictions (Landers and
Ulsoy 2008). Analysis is developed for turning and milling
processes (Insperger et al, 2008). considered such a force-
feed terms in their model while explaining the state-depend-
ent regenerative delay concept. A similar force-feed effect
taken in boring operations is demonstarted by Pratt and
Nafeh (Pratt and Nayfeh 2001). But these non-linear force-
feed models are one-dimensional and cannot be used in
oblique cutting cinditions (Pratt, 2001).

In the present paper analytical multidimensional stability
equations are formulated by considering nonlinear force-
feed effect in turning using three-dimensional tool geometry.
Feed and radial forces are included in the model appropriate-
ly and dynamic equations are developed. The revised expres-
sion for stable depth of cut as a function chatter frequency is
derived. Effect of feed on stability shown in stability lobe
diagrams have been tested in time domain by solving the
coupled delay differential equations. Based on the critical
depth of cut at various conditions of feed and speed, experi-
ments are conducted on a flexible work-piece to conform the
effect of feed on stability.
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This paper presents analytical stabiltity analysis of turning using non-linear force-feed model in two dimensions. Most of the existing ana-
lytical models ignored the effect of static feed term on the regeneration phenomenon. In practice there is a marked effect of feed on stabil-
ity due to force variation. The modified analytical equations for cutting insert using three dimensional too geometry are obtained by consid-
ering relative motion of tool with respect to a two dimensional elastic model of work-piece. The critical stability limits obtained as a func-
tion of feed are confirmed with time domain analysis. Experiments are conducted on a flexible work-piece at varying feed conditions. The
measured cutting forces show a marked effect of feed on stability. A neural network models developed to obtain the critical depth of cut at
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Dynamic cutting force models

The basic parameters in turning process are chip thickness h,
the depth of cut b and the cutting angles. The side cutting
edge angle (ψ) is measured ont  the rake face of the tool. The
relation between the forces and chip thickness is obtained by
considering the coordinate systems: x (feed), y (radial) and z
(cutting) as shown in Fig. 1. Dynamic displacement in cut-
ting (z) direction does not affect the chip thickness.

(b: depth of cut, h (t): chip-thickness, ψ: side cutting edge angle)

The modulated chip thickness resulting from vibrations of
the tool and work-piece is expressed as : 

h(t)=h0cosψ+[(xc(t)-xw(t-τ))-(xc(t-τ)-xw(t-τ))]cosψ-[yc(t)-
yw(t))-(yc(t-τ)-yw(t-τ))] sinψ (1) 

Here h0 is the nominal feed per revolution, xc(t), yc(t), xw(t)
and yw(t) are the cutter and work-piece displacements in the
current pass and xc(t-τ), yc(t-τ), xw(t-τ), yw(t-τ) are thatin
previous pass along x and y directions respectively. Also τ is
the time required for one spindle revolution.
For convenience, Eq(1) can be written as 

h(t)=hs+∆xcos-∆y sin ψ (2)

where hs=h0cos ψ (3)

∆x=(xc(t)-xw(t))-(xc(t-τ) (xw(t-τ) (4)

∆y= (yc(t)-yw(t))-(yc(t-τ)yw(yw(t-τ)) (5)
The cutting operation is three dimensional in nature due to
the existence of inclination angle. Now the forces at the cut-
ting edge are modeled with oblique cutting model. The
forces acting on the cutting edge are feed force Ff and radial
force Fr which are expressed as

KfFf = -------------- bha(t) (6)cosψ

KrFr = -------------- bhβ(t) (7)cosψ

Here Kf, a, Kr, β are the empirically determined cutting
coeffients in feed and radial directions. Substituting h(t)

from Eq.(2) and linerizing the forces about hs, we can write
Eqs. (6) and (7) as 

KfFf =------------- b [hs
a+a hsα-1 (∆x cosψ -∆y sin ψ)] (8)cosψ

KrFr= ------------ b[hs
β+βhs

β−1 (∆x cosψ − ∆y sin ψ)] (9)cosψ
Since static chip-thickness does not contribute to the regen-
eration, the first term in equations (8) and (9) can be elimi-
nated as in earlier models.

Now resolving the forces Ff and Fr along x and y directions:

bFx = Ffcosψ + Fr sinψ =------------ [(p∆y + q∆x) sinψ cosψcosψ
− (p∆x cos2ψ +q∆y sin2ψ)]                                            (10)

bFy = Ffcosψ + Fr sinψ =------------ [(p∆y − q∆x) sinψ cosψcosψ
− (p∆y cos2ψ − q∆y sin2ψ)]                                           (11)

where p=Kf α hs
α-1 and q=Kr βhs

β-1

The equations can be written in matrix form as 

(12)
These equations can be rewritten as 

{F}=b[A] {∆d} (13)

where (A)=

(14)
Stability analysis

Taking Laplace transforms on both sides of Eq. (13)

F(s)=b {A} (1-e-sτ) D(s)  (15)
By considering the transfer function matrix {G(s)} of the
system, it is possible to write D(s) as {G(s)} F(s). Hence Eq.
(15) becomes:

F(s)=b{A}(1-e-sτ) [G(s)]f(s) (16)

Substituting s=jω, Eq. (16) in frequency domain turns to:

F(jω s)=b(A] (1- e-jωτ) [G(jω)] F(jω) (17)

This equation has non-trivial solution if andonly if its deter-
minant is zero, yielding:

det {I} - λ[G0]}=0 (18)

where [G0]=[A][G(jω) and λ= b(1 e-jωτ) (19)

This eigenvalue problem given by Eq. (18) can be directly
solved to obtain the complex eigenvalue λ By considering
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the transfer matrix as [G(jω)]

=[                  ], the Eigen value can be obtained as

cosψ
λ = ------------------------------------------------------------------------------------------------------------------     (20)

(pcos2ψ-qsinψcosψ)Gxx+(qsin2ψ+qsinψ cosψ)Gyy

writing λfrom Eq. (19) as

λ=λR+λI=b(1- cos ωτ) + j b sin ωτ (21)

λIThe phase shift k=-----can be defined from Eq. 21according to
λR

λI       sinωτ ωτ            π           ωτ-----  =---------------------  = 1/tan ------  = tan(----- + nπ - -------) (22)
λR     1- cosωτ               2             2            2
This gives the critical values of τ as

2           1                   λ1τ*= ----- {(n+ ------)τ - a tan[ ]}where n =0, 1,2.... (23a)ω           2            λR
The corresponding critical values of b is given by

λRb*=------------- (23b)1 - cos  
By writing spindle speed in rpm as N = 60/τ, stability lobe
diagram can be plotted between the values of b* and N for
different values of n. The second order delay differntial
equation in time domain are solved at a specific testing depth
of cut and feed conditions using revised fourth order Runge-
Kutta method.

Results and Discussion

Based on the proposed analytical model, stability analysis is
conducted. The cutting material parameters used in the sim-
ulation (Ozlu and Budak 2007)are given in Table I.

Table I. Cutting and material data

Cutting tool work-piece
Natural frequency Modulus of elasticity E
ωnxc= ωnyc=1100Hz =2.1x107 N/m2

Stiffness kx=ky=1.2x107 N/m2 Density ρ =7800 Kg/m3

Damping ratio ζx=ζy=0.015 Diameter d=39 mm
Cutting coeffcients Kf=800 MPa Length L=75 mm
Kr=128 MPa
Side cutting edge angle ψ = 10o Average damping ratio

ζxw=ζyw=0.025
Normal rake angle = 5o

Inclination angle 5o

Nose radius = 0.4 mm
Working feed=0.01-0.6 mm

The axial (x) and bending (y) stiffness and corresponding
natural frequencies (ωnxc, ωnyc) of the work are computed by
considering cantilever boundary conditions. The tool work
transfer function matrices are evaluted according to:

Using the proposed stability model the feed effect on the cut-
ting stabiltity is shown in Fig. 2 as a feed depth stability lobe
diagram at speed of Ns=9042 rpm.

Fig. 2. Stability lobe diagrams from the proposed model

Critical depth of cut increases with feed at all the spindle
speed values. At low values of a a comparatively more
change in lobe diagram is noticed. Also it can be seen that
the width of lobe has increased due this nonlinear force
effect. The effect is verfied from the time domain analysis.
Fig. 3 shows the time domain response of tool displacement
and cutting forces under two different feed conditions at
common depth of cut.

Prediction of chatter with time domain analyisis requires
testing over all the operating regions. Thus it becomes 

Gxx(jω)          0
0          Gyy (jω)

ncw
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Fig. 3. Time domain response of tool displacement ands
cutting forces

lengthy procedure in regular cases. On the other hand, the
method of frequency sweeping to obtain the stability lobes
leads to modeling errors in the process. Hence in order to
predict the critical depths of cuts at various operating feeds
and speeds, a neural network approach is proposed.

Conclusion

Effects of nonlinear force-feed conditions in chatter stability
of turning operation have been presented in this paper. It is
observed that in all the cases the critical depth of cut increase
with feed. When the nonlinear feed exponent is less than one
as in regular metals, the effect is more pronounced.
Practically an increase in feed minimizes the cycle time, but
machining forces also increase with feed. So it cannot be
used to supperss chatter. Due to the inclusion of feed in chat-
ter relations. it is possible to calibrate the force models at any
feed. In practical contions, the cutting cofficients also
change with feed. The influence is ignored in the analytical
model.
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