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Abstract

While the accumulation of arsenic in rice (Oryza sativa L.) has been highlighted as a major concern 
in Bangladesh, sustainable measures are critically needed to reduce the uptake of arsenic by rice 
plants. In the present study, a pot-experiment was conducted using a Boro rice variety (BRRI 
dhan-29) in two geomorphologically different soils from Holocene floodplains and Pleistocene 
terraces, in which silicon-rich fresh rice husk (FRH) and rice husk ash (RHA) were applied, as 
silicon fertilisers, in the soils at the rate of 1% (w/w) of rice residue:soil.In the Holocene floodplain 
soils, the application of FRH was found to decrease arsenic in grain, husk and straw by 42, 56 and 
51%, respectively, whereas the soil incorporation of RHA decreased arsenic in grain, husk and straw 
by 26, 37.5 and 36%, respectively. In the Pleistocene terrace soils, the application of FRH reduced 
the grain, husk and straw arsenic by 38, 38 and 44%, respectively, whereas the RHA decreased the 
grain, husk and straw arsenic by 26, 30 and 29%, respectively. Fresh rice husk was found to be more 
effective in alleviating arsenic accumulation in rice than RHA. In both the Holocene floodplain and 
Pleistocene terrace soils, the grain concentrations of calcium, phosphorus, silicon, and zinc were 
found to be increased with the decrease of arsenic in the grain due to the use of FRH and RHA. The 
present study suggests that silicon-rich rice husk residue scan be used as silicon fertilisers to reduce 
arsenic accumulation in rice in Bangladesh.
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Introduction

Arsenic contamination of paddy cultivated soils irrigated 
with arsenic laden groundwater in Bangladesh is well 
documented (Meharg and Rahman, 2003; Huq and Naidu, 
2003; Chowdhury et al., 2017). Rice crops grown in the 
arsenic enriched soils can accumulate elevated 
concentrations of arsenic into the plant parts, particularly into 
the grains (Meharg et al., 2001; Abedin et al., 2002; Williams 
et al., 2006; Huq 2008). Rice accumulates an order of 
magnitude higher arsenic concentration in its grain compared 
to other cereals (Williams et al., 2007). The high 
concentration of arsenic in rice grain is due to a number of 
factors. Arsenic in flooded paddy soils is more available 
compared to non-flooded soils, as it is present predominantly 

as arsenite, which is more mobile and toxic compared to 
arsenate (Xu et al., 2008; Takahashi et al., 2004). 
Additionally, rice is a high accumulator of silicon (Ma et al., 
2001a; Ma et al., 2001b), which is a non-toxic and beneficial 
element for rice, comprising up to ten percent of the dry matter 
in rice husk and straw being much higher than other mineral 
nutrients (Epstein, 1994; 1999; 2009). This is important as it 
has been shown that arsenic is taken up by the same 
transporter genes (Lsi1 and Lsi2), which is responsible for the 
accumulation of silicon from the soil (Ma et al., 2006; Ma et 
al., 2008). Rice is the staple food of one hundred and sixty 
million people in Bangladesh, and seventy percent of total 
calorific intake by the population is from rice (GRiSP, 2013).

It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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Table I. Background properties of the initial soil and silicon-rich rice residues

Soil properties 
Value 

Holocene floodplain 
soil 

Pleistocene terrace 
soil 

Fresh rice husk Rice husk ash 

pH 6.86 5.61 7.10 7.10 
Organic carbon (%)  1.25 0.84 6.00 - 

Organic matter (%)  2.18 1.47 10.32 - 

Arsenic (mg kg-1) 8.32 5.55 1.55 1.73 

Calcium (mg kg-1) 18110 8310 2273 3706 

Nitrogen (%) 0.16 0.09 1.04 1.15 

Phosphorus (%) 0.06 0.03 0.004 0.63 

Potassium (%) 0.27 0.34 0.90 1.71 

Silicon (mg kg-1) 189 268 467 1800 

Sulfur (%) 0.05 0.06 0.12 0.10 
Zinc (mg kg-1) 77.75 45.45 72 91 
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Fig. 1. The concentrations of total arsenic (As) in rice grain, husk, and straw grown in non-amended control (C) and 
silicon-rich fresh rice husk (FRH) and rice husk ash (RHA) amended Holocene floodplain and Pleistocene terrace 
soils. One-way analysis of variance was used to compare pair-wise the means of arsenic concentrations in grain, husk 
and straw individually at each of the treatments (C, FRH and RHA). Treatments that share the same letter (A – C) 
are not significantly different. The letters indicate Tukey groupings for the treatments with respect to their mean 
arsenic concentrations in rice grain, husk and straw
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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Fig. 2. The concentrations of total calcium (Ca), phosphorus (P), silicon (Si), and zinc (Zn) in rice grain, husk, and 
straw grown in non-amended control (C) and silicon-rich fresh rice husk (FRH) and rice husk ash (RHA) amend-
ed Holocene floodplain and Pleistocene terrace soils. One-way analysis of variance was used to compare pair-wise 
the means of the concentrations of calcium, phosphorus, silicon and zinc in grain, husk and straw individually at 
each of the treatments (C, FRH and RHA). Treatments that share the same letter (A – C) are not significantly 
different. The letters indicate Tukey groupings for the treatments with respect to their mean concentrations of 
calcium, phosphorus, silicon and zinc in rice grain, husk and straw
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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Fig. 3. Relationships between silicon (Si) and arsenic (As), calcium (Ca), phosphorus (P), and zinc (Zn) concentra-
tions in rice grain, husk, and straw. The data are irrespective of the soil types (Holocene floodplain and Pleisto-
cene terrace soils) and silicon-rich rice husk residues (fresh rice husk and rice husk ash)
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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Fig. 4. Concentrations of arsenic (As), calcium (Ca), phosphorus (P), silicon (Si), and zinc (Zn), in the initial soil 
(IS) and the post-harvest soils of non-amended control (C) and fresh rice husk (FRH) and rice husk ash (RHA) 
amended soils of the Holocene floodplain and Pleistocene terrace. One-way analysis of variance was used to 
compare pare-wise the means of elemental concentrations in the initial and post-harvest soils at each of the 
treatments (C, FRH, and RHA). Treatments that share the same Tukey letter (A-D, for Holocene floodplain soils; 
a-d for Pleistocene terrace soils) are not significantly different. The bars are mean ± standard error of the mean
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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It indicates that rice dependent diets, such as those of 
Bangladeshi people, pose a serious issue for human arsenic 
intake (Schoof et al., 1999). Therefore, developing a 
sustainable strategy to alleviate arsenic accumulation in rice, 
thereby improving the quality of food and human health 
across the world is indispensable.

Use of silicon is an emerging method to reduce arsenic 
uptake by rice (Ma et al., 2008; Seyfferth et al., 2016; 
Limmer et al., 2018). Dissolved and plant-available silicon in 
soil can improve the yield and quality of rice by reducing 
arsenic uptake/toxicity (Bogdan and Schenk, 2008; Li et al., 
2009; Seyfferth and Fendorf, 2012) and the severity of fungal 
diseases (Datnoff et al., 2001; Seebold et al., 2001). 
Increasing plant-available silicon in the porewater of 
well-weathered, silicon-depleted rice soils (Savant et 
al.,1997) can decrease grain arsenic as a result of competitive 
interactions between silicon (silicic acid) and arsenic 
(arsenite) for plant uptake and adsorption onto soil solids 
(Luxton et al., 2006; Li et al., 2009; Bogdan and Schenk, 
2008; Seyfferth and Fendorf, 2012). However, the source of 
silicon matters, as various silicon sources affect rice arsenic 
uptake differently. Silicon-rich materials that increase 
porewater silicon in high concentrations, such as silica gel, 
decrease grain arsenic (Li et al., 2009; Seyfferth and Fendorf, 
2012), whereas silicon-rich materials with a low silicon 
solubility, such as diatomaceous earth, may increase grain 
arsenic (Seyfferth and Fendorf, 2012). The application of 
silica fertilisers such as calcium silicate (CaSiO3) in paddies 
may reduce arsenic concentration in rice (Guo et al., 2005; 
Guo et al., 2007), but these may contain toxic trace metals 
which can negatively affect rice yield and quality (Gu et al., 
2011). While rice farmers in developing countries, like in 
Bangladesh, may have limited access to synthetic silicon 
fertilisers, agronomic practices like incorporation of 
silicon-rich rice residues such as rice straw and rice husk can 
be a holistic approach to reduce arsenic in rice grain (Ma et 
al., 2014; Seyfferth et al., 2016; Penido et al., 2016; Limmer 
et al., 2018). Incorporation of silicon-rich rice straw has been 
reported to increase arsenic uptake by rice in grain (Ma et al., 
2014), whereas incorporation of silicon-rich rice husk and 
husk ash decreased arsenic accumulation in rice grain 
(Penido et al., 2016; Seyfferth et al., 2016). Rice husk 
contains less arsenic and labile carbon and provides more 
silicon to soil porewater compared to rice straw which 
releases more arsenic and less silicon in soil porewater than 
fresh husk or huskash (Penido et al., 2016). In addition, 
incorporation of rice husk generates less methane emissions, 
which is a potential greenhouse gas, from rice paddies than 
incorporation of straw (Penido et al., 2016; Gutekunst et al., 
2017). Therefore, rice husk is advantageous over rice straw 
as a sustainable solution to mitigate arsenic contamination in 

rice worldwide. However, the performance of the silicon-rich 
amendments relative to different rice varieties as well as 
different soil types in different geographic regionsneeds to be 
better understood.

Bangladesh has three major geomorphological units 
(Brammer, 1996; Huq and Shoaib, 2013). These are hill, 
terrace, and floodplain areas. The uplifted terrace areas are of 
Pleistocene age, and the floodplains are of Holocene age. 
These geomorphological units are related to the parent 
geological formations, and they are also characterized by 
land topography and age of the soil formation through 
sediment deposition over time (Brammer, 1996). Chowdhury 
et al. (2017) demonstrated that the Pleistocene terrace paddy 
soils were generally low in the concentrations of a range of 
elements, including arsenic and essential macro-and 
micro-nutrient elements, compared to the Holocene 
floodplain paddy soils. Provided that the mobilityand 
biogeochemistry of arsenic in the geomorphologically 
different paddy soils of Bangladesh are highly and inherently 
variable (Chowdhury et al., 2017; Chowdhury et al., 2018), it 
is indeed important to investigate the potential of silicon 
fertilisation in reducing arsenic accumulation in rice grown 
in the different soil types of Bangladesh.

In the present study, we evaluated the effects of silicon-rich 
rice husk residues, both fresh husk and husk ash, 
amendments on the accumulation of arsenic, calcium, 
phosphorus,silicon, and zinc in rice (BRRI dhan 29 variety) 
grown in two geomorphologically and biogeochemically 
different soils of Bangladesh, the Holocene floodplain and 
Pleistocene terrace soils, which were also naturally variable 
in arsenic concentrations. 

Materials and methods

Collection and processing of soil samples

Bulk soil samples were collected from 2 geomorphologically 
different regions of Bangladesh: (i) the Holocene floodplain; 
the soils belonged to the physiographic region of Meghna 
Estuarine floodplain located at Baidder Bazar union, 
Sonargaon upazila, Narayanganj district, 23° 39' N and 90° 
37' E, and (ii) the Pleistocene terrace; the soils belonged to 
the physiographic region of Madhupur Tract, located at 
Bhawal Rajabari union, Sreepur upazila, Gazipur district, 24° 
06' 35.96" N and 90° 29' 56.89" E. The collected soil samples 
were processed and prepared for pot experiment and 
background analysis following the procedures described in 
Chowdhury et al. (2010).

Pot culture experiment

A pot culture experiment was conducted using a lowland 
crop, rice (Oryza sativa L., BRRI dhan 29 variety) and the 
soils collected from the geomorphologically different areas 
of Holocene floodplain and Pleistocene terrace. In order to 
determine the impact of silicon-rich ricehusk incorporation to 
soil on arsenic uptake by rice, powered fresh rice husk (FRH, 
obtained from a rice millin Savar, Dhaka) and rice husk ash 
(RHA, obtained by combustion of the same rice husk) were 
utilised as silicon amendment treatment at a rate of 1% (w/w) 
of rice residue:soil, as recommended by Penido et al .(2016), 
although this level of amendment could be higher than 
feasible for application on a large scale considering the 
production of husk per crop cycle (Seyfferth et al. 2016). 
Rice grown in the soils amended with the silicon-rich rice 
residues were compared to non-amended controls. All the 
treatments and non-amended control were conducted in 
triplicates. Therefore, a total of 18 pots (earthen pots of 8 kg 
in size, having no hole at the bottom, with 5 kg of air-dried 
and 5 mm sieved soil samples) were used in the pot 
experiment. The FRH and RHA (50 g) were gently mixed by 
hand into the soil in the pots 7 days prior to the plantation of 
rice seedlings collected from a farmer’s field, and the pots 
were flooded to 4 cm above the soil surface using distilled 
water. All the pots were placed in a net-house in a 
randomized arrangement. Transplantation of the rice 
seedlings and culture of the plants during the rice growing 
period were done according to the protocols described in 
Chowdhury et al. (2010).

Collection and processing of plants and residual soils

Rice plants were harvested after 110 days of seedling 
transplantation. At harvest, the rice plantsamples (separated 
into 3 parts: roots, straw and grains) and the residual soil 
samples were collected and processed manually by following 
the procedures described in Chowdhury et al. (2010).

Chemical analysis

The initial and residual soils, and the FRH and RHA were 
analyzed for pH, organic carbon, arsenic, calcium, nitrogen, 
phosphorus, potassium, silicon, sulfur, and zinc, and the rice 
grain, husk, and straw were analyzed for total arsenic, 
calcium, phosphorus, silicon, and zinc following the 
analytical procedures described in Huq and Alam (2005). For 
the analysis of the elements, the soils and plant samples were 
digested using aqua regia (a mixture of nitric acid and 
hydrochloric acid in the ratio of 1:3). The concentrations of 
phosphorus in the soils and plant samples were determined 
colorimetrically using a spectrophotometer. The 
concentrations of arsenic, calcium, silicon, and zincin the 

soils and plant samples were determined using atomic 
absorption spectrometer (Shimadzu AA-7000 was used for 
analysing arsenic and silicon, and Varian AA-240 was used 
for analysing calcium and zinc). The quality control/quality 
assurance of the analysis was maintained following the 
standard procedure.

Statistical analysis

Statistical analyses were performed using the statistical 
software Minitab v.19 (State College PA) and SigmaPlot 
v.14 (Systat Software Inc., CA). The data were checked for 
normality and were transformed prior to statistical analysis 
where appropriate.

Results and discussion

Background properties of the soil and silicon-rich rice 
residues

The concentrations of arsenic, calcium, nitrogen, organic 
carbon, phosphorus, and zinc werefound to be higher in the 
Holocene floodplain soil compared to the Pleistocene terrace 
soil, which had higher concentrations of potassium, silicon 
and sulfur (Table I). The paddy soils of the Holocene 
floodplains have been found to be generally higher in a range 
of geochemical elements including arsenic compared to the 
Pleistocene terracesoils across Bangladesh (Chowdhury et al. 
2017). Higher concentrations and mobilization of arsenic in 
the Holocene floodplain soils due to enhanced influence of 
the pedoenvironmental properties in the soils have also been 
reported by Martin et al. (2014; 2015). Silicon is the most 
abundant element in soil (Kabata-Pendias, 2011); however, 
silicon in the paddy soil svaries with the amount of crop 
residues remaining in the field that adds large amounts of 
silicon-rich phytoliths in the soils (Wilding, 1967; Parr and 
Sullivan, 2005; Wickramasinghe and Rowell, 2006).

The pH and the concentrations of all the elements analysed, 
except sulfur, were observed to be higher in the RHA 
compared to in the FRH (Table I).  This was perhaps due to 
the fact that when the rice husks were burnt, the strongly 
bound fractions of the elements were released and came into 
the solution when extracted. Igwebike-Ossi (2017) also 
found lower concentrations of 13 different elements in fresh 
rice husks than in rice husk ash, which could be attributed to 
the presence of greater amounts of water and lignocellulosic 
components in fresh rice husk giving it a larger weight and 
volume of materials than in the husk ash (Mansaray and 
Ghaly, 1998; Stroevena et al., 1999). When these 
components were removed during combustion, the reduction 
in weight and volume of the rice husk ash residue gave rise to 
higher concentrations of the elements in the husk ash.

Impacts of silicon fertilisation on rice

The incorporation of silicon-rich rice husk residues into soil 
was found to decrease total arsenic in rice grain, husk and 
straw (Fig. 1). In the Holocene floodplain soils, FRH reduced 
arsenic in grain, husk and straw by 39 – 45%, 55 – 58% and 
50 – 51%, respectively, whereas RHA decreased arsenic in 
grain, husk and straw by 23 – 32%, 36 – 38% and 33 – 39%, 
respectively, compared to arsenic concentrations in grain, 
husk and straw in the non-amended control. In the 

Pleistocene terrace soils, FRH reduced arsenic in grain, husk, 
and straw by 36 – 40%, 36 – 41% and 42 – 45%, respectively, 
while RHA decreased arsenic in grain, husk and straw by 23 
– 27%, 27 – 32% and 27 – 31%, respectively, compared to 
arsenic concentrations in grains, husk and straw in the 
non-amended control. These indicated that the silicon-rich 
rice husk residues had potentials to reduce arsenic 
accumulations in rice plants, the FRH being more efficient in 
reducing rice arsenic concentrations compared to the RHA. 
Significant variations in the concentrations of arsenic in grain 

(ANOVAF = 67.91 and ANOVAF = 41.05; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils), husk 
(ANOVAF = 690.86 and ANOVAF = 194.98; p < 0.001, respectively, 
for Holocene floodplain and Pleistocene terrace soils) and 
straw (ANOVAF = 293.60 and ANOVAF = 395.26; p < 0.001, 
respectively, for Holocene floodplain and Pleistocene terrace 
soils) were observed within the silicon amended and 
non-amended soils (Fig. 1). The mean concentration of 
arsenic in rice grain in the FRH amended Holocene 
floodplain soils was found to be significantly lower than the 
mean grain arsenic concentration in RHA treated soils, while 
in the FRH and RHA amended Pleistocene terrace soils, the 
reduction in grain arsenic was not observed to be statistically 
significant which could be related to the higher inherent 
silicon concentration in the Pleistocene terrace soil (Table I). 
Significant differences in arsenic concentrations in rice grain, 
husk and straw in response to different silicon amendments 
(fresh husk, husk ash and calcium silicate) were also 
observed by Teasley et al. (2017). Seyfferth et al. (2016) also 
reported reductions in toxic inorganic arsenic in rice grain 
and straw by 25 – 50% and at least 50%, respectively, for 3 
different rice cultivars (Oryza sativa L., cv. M206, IR66 and 
Nipponbare) due to soil incorporation of silicon-rich fresh 
rice husk residues. This study also found FRH more 
promising than RHA in reducing the accumulation of 
inorganic or total arsenic in rice plants, particularly in rice 
grain. However, charred rice husk was found to be more 
effective than fresh rice husk in reducing arsenic 
accumulation in rice plant, which was perhaps due to the 
presence of more amorphous silica in the char as prepared 
under lower temperature than ash (Mansaray and Ghaly, 
1998; Hanafi and Abo-El-Enein, 1980) that rendered its 
silicon to be more soluble in the media (Limmer et al., 
2018). Teasley et al. (2017) observed about 40% decrease 
in grain arsenic concentration due to fresh rice husk 
amendment, whereas neither calcium silicate nor rice husk 
ash amendments significantly affected total grain arsenic. 
Leksungnoen et al. (2019) also reported decreased 
inorganic grain arsenic by 20-24% as a result of the 
incorporation of RHA in soil. Alleviation of arsenic 
accumulation in rice by using other sources of silicon 
amendments, such as silica-gel (Li et al., 2009; Seyfferth 
and Fendorf, 2012; Fleck et al., 2013, Liu et al., 2014) and 
different silicate minerals as silica fertilisers (Guo et al., 
2005; Guo et al., 2007; Tripathia et al., 2013; Wang et al., 
2016; Limmer et al., 2018) have also been reported. 

The decrease in the concentrations of arsenic,due to 
silicon-rich FRH and RHA amendments,were found to 
related to the increase in silicon concentrations in the 
grain, husk and straw. In the Holocene floodplain soils, 

FRH significantly increased (p < 0.001) silicon in grain, 
husk and straw by 423%, 178% and 124%, respectively, 
whereas RHA significantly increased (p < 0.001) silicon in 
grain, husk and straw by 195%, 102% and 62%, 
respectively, compared to silicon concentrations in grain, 
husk and straw in the non-amended control (Fig. 2). In the 
Pleistocene terrace soils, FRH significantly increased (p < 
0.001) silicon in grain, husk, and straw by 258%, 1.42% 
and 57%, respectively, while RHA significantly increased 
(p < 0.001) silicon in grain, husk and straw by 565%, 47% 
and 100%, respectively, compared to silicon 
concentrations in grains, husk and straw in the 
non-amended control (Fig. 2). Silicon enrichment in the 
rice plantsdue to silicon fertilization (Seyfferth et al., 
2016; Teasley et al., 2017; Cuong et al., 2017) had 
potentials to decrease arsenic in the rice (Seyfferth et al., 
2016; Teasley et al., 2017). The decrease in arsenic in the 
rice plants due to FRH and RHA amendments in the soils 
was perhaps regulated bythecompetitive interactions 
between silicon and arsenic for plant uptake and sorption. 
The addition of silicon-rich rice husk residues has been 
reported to increase plant-available silicon in soil 
porewater, which limitsthe uptake of arsenite by 
suppressing the expression of the Low silicon 1 (Lsi1) and 
2 (Lsi2) genesin roots (Ma et al., 2006; Ma and Yamaji, 
2015), and enhance the competition of silicon with 
arsenite for uptake (Bogdan and Schenk, 2008; Seyfferth 
and Fendorf, 2012). Thereduced uptake of arsenic by 
roots, along with the reducedadsorption of arsenic onto 
soil solids due to enhanced competition with the released 
silicon from FRH and RHA in soil porewater (Luxton et 
al., 2006), increases the concentration of arsenic available 
in soil porewater that may undergo redistribution and 
remobilisation through irrigation/ monsoon flooding 
(Roberts et al., 2010) depending on the land 
topographical condition (Chowdhury et al., 2021). 
However, the mobilization and retention of arsenic and 
silicon in paddy soils are also affected by a a number of 
other factors related to the properties and composition of 
the soil, such as temperature, pH, redox potential, clay 
and organic matter content, ionic constituents as well as 
the microbially mediated biogeochemical interactions 
that control the biogeochemical cycling of the elements in 
the soil (Bissen and Frimmel, 2003; Mahimairaja et al., 
2005; Sommer et al., 2006; Moreno-Jiménez et al., 2012; 
Pati et al., 2016).

The FRH and RHA amendments significantly (p < 0.001) 
affected the concentrations of calcium, phosphorus and 
zinc in rice grain, husk and straw in the Holocene 

floodplain and Pleistocene terrace soils (Fig. 2). The mean 
concentrations of calcium, phosphorus (except for FRH in 
Pleistocene terrace soil), silicon and zinc in grain were 
found to be increased in both the FRH and RHA amended 
soils (Fig. 2). The accumulations of the nutrient elements 
were enhanced perhaps due to the less arsenic 
accumulation within the rice grain, as higharsenic 
concentrations within rice grains impacts negatively on 
other grain nutrient elements (Williams et al., 2009; 

Norton et al., 2010). While the increased silicon 
concentration in grain had negative impact on grain 
arsenic, it showed positive relationships with calcium (linear 

regressionR2 = 0.98, p < 0.001) and zinc (linear regressionR2 = 0.70, 
p < 0.001) concentrations within the grain (Fig. 3). 
Increased silicon concentration in soil solution perhaps 
mobilized the essential nutrients that enhanced the 
concentrations of the nutrients in rice grain (Cuong et al., 
2017; Swain and Rout, 2018).

Residual concentrations of the elements in soil

The incorporation of the silicon-rich FRH and RHA was 
found to increase, in general, the concentrations of all the 
elements, but calcium, in the post-harvest soils, compared 
to the concentrations in the initial soil (Fig. 4). The 
concentrations of arsenic were found to be significantly 
decreased in the post-harvest soils of the non-amended 
controls (by 16 and 8% in the Holocene floodplain and 
Pleistocene terrace soils, respectively), whereas the 
concentrations of arsenic were observed to be 
significantly increased by 4-8% in the FRH and RHA 
amended Holocene floodplain and Pleistocene terrace 
soils. Silicon was also found to be increased by 19-20% in 
the FRH amended post-harvest soils, and by 36-41% in the 
RHA amended post-harvest soils of the Holocene 
floodplain and Pleistocene terrace.

Conclusion

Silicon-rich rice husk residues (fresh huskand husk ash) 
have potentials to alleviate arsenic accumulation in rice 
grown in the geomorphologically different soils 
(Holocene floodplain and Pleistocene terrace soils) of 
Bangladesh. Soil amendments with rice husk residues 
could be an effective measure to mitigate arsenic 
contamination of the food chain in the arsenic affected 
areas of Bangladesh.
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