Nematicidal potential of oilcake.agains plant nematodes associated with *Coriandrum sativum* L. in Balochistan, Pakistan

1 Crop Diseases Research Institute (P.A.R.C), University of Karachi, Karachi-75270, Pakistan
2 Institute of Environmental Studies, University of Karachi, Karachi-75270, Pakistan
3 Department of Zoology, University of Karachi, Karachi-75270, Pakistan

Abstract

Ten geneta of plant nematode associated with coriander (*Coriandrum sativum* L.) were isolated and identified in ten different localities of Balochistan, Pakistan. The most common was *Meloidogyne javanica* followed by Basiria spp. Principal component analysis (PCA) and cluster analysis using Ward’s method were performed. The results of the two methods supported each other. Castor and mustard oilcakes and carbofuran, a chemical nematicide were used in treatments against *Hoplolaimus Columbus* and *M. javanica* larvae. Mustard oilcake was found to be more effective on *H. Columbus* while castor oilcake showed effective control on *M. javanica*.

Keywords: Management; Survey; Control; Mustard oilcake; Castor oilcake

Introduction

Coriander (*Coriandrum sativum* L.) is a well-known ayurvedic herb having all parts of plant edible, but fresh leaves and dried seeds are the most commonly used, among biotic stresses plant-parasitic nematodes, stem-rot, powdery mildew cause substantial damage to crop that is widely grown in Balochistan, Pakistan (Khan et al., 2019). Earlier Anwar and McKenry (2012) had recorded *Hoplolaimus columbus* and *Paratrichodorus minor* from Punjab, Pakistan. Nasr-Esfahani et al. (2008) reported several species of root-knot nematodes (*Meloidogyn* sp.) attacking coriander in Esfahan, Iran. There is great variation in the distribution of plant genera associated with it. Some crops may have few nematodes while others have numerous genera associated with the crop. Swapna et al. (2017) suggested that nematodes damage is often underestimated as symptoms are less obvious when compared to other pests. Many plant nematodes feed on the roots of plants and derive their nutrients from living root cells which are altered due to pharyngeal gland secretions prior to food ingestion or by migrating in the infected tissue thereby destroying it (Nicol et al., 2002). Hence the feeding process damages the root system and its ability to absorb water and nutrients (Lambert and Bekal, 2002) and thus provide opportunity for other plant pathogens to invade plant roots which further weakens the plant. Direct damage to plant tissues by root feeding nematodes include distortion of plant parts, vigor and death of tissues which are infected depending on type of nematode species whether ecto-parasitic or endoparasitic.

*Corresponding author e-mail: aly.khan@hotmail.com
Simultaneously due to higher temperatures, humidity and use of high agronomic inputs such as chemical fertilizers and plant growth promoters has resulted in complete crop losses in many areas of the province. The most important symptoms observed in coriander were chlorosis of leaves and stunting (Ravindra et al., 2016). Singh and Gupta (2011) found heavy infestation of root-knot nematode associated with coriander in Gharana Village and some farms of Jammu district. The plant nematodes may cause up to US $ 100 billion loss per year to world agriculture (Kayani et al., 2017). Feldmesser et al. (1971) have estimated damage caused by vegetable crops losses to be 11%. Singh and Kumar (2015) estimated vegetable crop losses due to vegetables in Uttar Pradesh was 23.70% during 2012 to 2015.

The current survey was the first to be taken in Balochistan, Pakistan reporting nematodes associated with coriander alongwith an experiment to evolve control strategy using organic amendments and for comparison a chemical nematicide was used. Those amendments were selected which are easily available by the farmers from the localities surveyed.

Materials and methods

In total 120 rhizosphere soil samples were randomly collected from 10 different areas of Balochistan, Pakistan namely 1. Sakran, 2. Hub, 3. Kalat, 4. Surab, 5. Lasbela, 6. Khundi, 7. Khuzdar 8. Piromal 9. Wadh and 10. Winder. Each sample was a composite of 5-20 random sub-samples taken in the same location, to a depth of 0-15 cms, using a small shovel. Between samples the shovel was thoroughly rinsed with water and properly dried to stop contamination. The rhizosphere soil was thoroughly mixed on a polythene sheet and 200 g was used for extraction of plant parasitic nematodes.

The samples were stored in Polythene bags and kept at 6°C in a refrigerator for not more than two weeks. Extraction of soil nematodes was done according to Cobb’s sieving and decanting method followed by modified Baermann’s funnel technique (Goody, 1957; Southey, 1986). Species identification was done of Root-knot nematodes (Meloidogyne spp.) by preparation of perineal sections of the females after dissecting out from galled roots, observed under compound microscope (Jepson, 1987). For counting nematode population per 200 g multi-chambered counting dish was used under a stereoscopic microscope particular genus was counted and identification confirmed with Taxonomic keys (Siddiqi, 2000).

Analysis of variance was (ANOVA) performed in accordance with Rosner (2006). Two dimensional ordination using principal component analysis (PCA) and agglomerative cluster analysis by Ward’s method were performed in accordance with Stevens (1996).

The soil was tilled twice within a week before; applying the treatments so as to facilitate the release of any residual fumigant left of any prior experiment. The amendments were incorporated five days before sowing to a depth of 5-10 cm in microplots measuring 1m². The soil was irrigated once a week. Carbofuran at a rate of 10 kg/ha (1 g/m²) and mustard and castor oil-cake 800 kg/ha (80 g/m²) were used. All treatments were applied in accordance with the recommendations of Plant Protection, Pakistan. Weeding was done every 2 weeks. After 12 weeks population of both nematodes was recorded using Baermann Funnel technique. Results were analysed using ANOVA, least significant level (L.S.D.) (Zar, 2008).

Results and discussion

A total of 10 genera of nematodes were recorded from the 10 localities surveyed namely Basiria Siddiqi, 1959 spp; Boleodorus filiformis Husain and Khan, 1977; B. pakistanensis Siddiqi, 1963; Helicotylenchus dihystera (Cobb, 1893) Sher, 1961; H. indicus Siddiqi, 1963; Hoplolaimus columbus Sher, 1963; H. pararobustus (Schuurmans Stekhoven and Teunissen, 1938) Sher, 1963; Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949; M. javanica (Treub, 1885) Chitwood, 1949; Merlinius khuzdarensis Handoo et al., 2007; Pratylenchus pratensis (de Man, 1880) Filipjev, 1936; Psilenchus hilarus Siddiqi, 1963; Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971; T. brassicae Siddiqi, 1961 and Xiphinema Cobb, 1913 spp. (Table I). The results of principal component analysis (PCA) are shown in Table II. The first, second and the third components explained 60.147, 22.948 and 10.447 percent of total variance respectively in the data set. Together they contributed 93.54% of the total variance. The first component was primarily a function of Meloidogyne javanica, Hoplolaimus columbus and Boleodorus pakistanensis.

The second component was chiefly regulated by Boleodorus pakistanensis; Basiria spp. and Meloidogyne javanica while the third component was basically dependent on species Hoplolaimus columbus, Psilenchus hilarus and Meloidogyne javanica. Fig. 1 shows the 2-dimensional ordination of localities; the localities that are similar are placed together in the ordination. Fig. 2 shows the dendrogram derived from agglomerative cluster analysis of the ten localities with respect to their nematode composition. The chaining is obvious although the method employed (Ward’s method with Euclidean distance) is expected to yield spherical nea
Table I. Plant nematodes associated with Coriandrum sativum L. in ten different localities of Balochistan, Pakistan

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Localities</th>
<th>Nematodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hub</td>
<td>Hoplolaimus columbus Sher, 1963; M. javanica, larvae; Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 larvae.</td>
</tr>
<tr>
<td>3</td>
<td>Kalat</td>
<td>H. columbus; M. javanica larvae</td>
</tr>
<tr>
<td>4</td>
<td>Surab</td>
<td>M. javanica larvae</td>
</tr>
<tr>
<td>5</td>
<td>Lasbela</td>
<td>Boleodorus pakistanensis Siddiqi, 1963; P. pratensis; Xiphinema spp.; Tylenchorhynchus brassicae Siddiqi, 1961</td>
</tr>
<tr>
<td>6</td>
<td>Khundi</td>
<td>Helicotylenchus indicus Siddiqi, 1963; Basiria Siddiqi, 1959 spp.; Helicotylenchus dihystera (Cobb, 1893) Sher, 1961; Merlinius khuzdarensis Handoo et al., 2007</td>
</tr>
<tr>
<td>7</td>
<td>Khuzdar</td>
<td>Boleodorus pakistanensis; Basiria spp.</td>
</tr>
<tr>
<td>8</td>
<td>Piromal</td>
<td>B. pakistanensis; B. filiformis; H. indicus; Basiria spp.; H. dihystera; M. khuzdarensis</td>
</tr>
<tr>
<td>9</td>
<td>Wadh</td>
<td>B. pakistanensis; H. columbus; Xiphinema sp.; T. brassicae; P. pratensis; H. pararobustus; Basiria spp.; M. incognita larvae; M. javanica larvae; P. hilarus</td>
</tr>
<tr>
<td>10</td>
<td>Winder</td>
<td>Basiria spp.; Boleodorus filiformis Husain and Khan, 1977</td>
</tr>
</tbody>
</table>

Table II. Results of principal component analysis showing eigenvalues, eigenvector coefficients and associated variables

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Eigenvalue</th>
<th>% variance</th>
<th>First 3 eigenvector coefficients</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7117.93</td>
<td>60.147</td>
<td>0.8929</td>
<td>M. javanica</td>
</tr>
<tr>
<td>1</td>
<td>2715.72</td>
<td>22.948</td>
<td>0.37708</td>
<td>H. columbus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– 0.21848</td>
<td>B. pakistanensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.96633</td>
<td>B. pakistanensis</td>
</tr>
<tr>
<td>2</td>
<td>236.34</td>
<td>10.447</td>
<td>0.1796</td>
<td>M. javanica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– 0.0952</td>
<td>Basiria spp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8853</td>
<td>H. columbus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4984</td>
<td>P. hilarus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– 0.3469</td>
<td>M. javanica</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>93.54</td>
<td>0.3469</td>
<td>M. javanica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
groups. A small group of localities 6, 7 and 10 is characterized by the occurrence of Basiria. A small sub-group contains Basiria and Boleodorus. A group composed of localities 1 and 2 that have Meloidogyne javanica and Hoplolaimus columbus in common. Localities 5 and 9 have Boleodorus pakistanensis, Pratylenchus pratensis, Xiphinema spp. and Tylenchorhynchus brassicae, owing to this it joins the group on the left.

The suppression of nematode using oilcake showed that Hoplolaimus columbus was significantly (p < 0.001) controlled in all the treatments namely mustard oil-cake, castor oilcake and the chemical nematicide carbofuran. When comparing the two oilcakes, mustard oilcake was more effective as compared to castor oil-cake.

Similarly Meloidogyne javanica was also significantly (p < 0.01) controlled by all the treatments. Castor oilcake was more effective as compared to mustard cake (Table III and IV).

This study provides preliminary information and management of nematodes associated with coriander in Balochistan, Pakistan. Mixed population of nematodes were observed in all the ten localities surveyed. Surface symptoms of nematode infection were usually stunted plants and yellowing of leaves. Migratory nematodes (Pratylenchus sp.) feeding on roots of crop cause cavities which lead to bloated tissue, root necrosis resulting in stunted growth and decreased yield. Xiphinema sp. which is capable of transmitting virus (Brown et al., 2004) was also encountered in the present survey.

Fig. 1. Dendrogram derived from cluster analysis of 10 localities
Fig. 2. Two-dimensional PCA ordination of 10 localities from which samples were collected.

Table III. ANOVA table for suppression of *Hoplolaimus columbus* Sher, 1963

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>76176.18</td>
<td>3</td>
<td>2539.20</td>
<td>53.58</td>
</tr>
<tr>
<td>Error</td>
<td>5686.75</td>
<td>12</td>
<td>473.89</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Total</td>
<td>81863</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV. ANOVA table for suppression of *Meloidogyne javanica* (Treub, 1885) Chitwood, 1949

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>272159.18</td>
<td>3</td>
<td>90719.72</td>
<td>8.38</td>
</tr>
<tr>
<td>Error</td>
<td>129822.75</td>
<td>12</td>
<td>10018.56</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>Total</td>
<td>401981.98</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Presence of root-knot nematodes, *Meloidogyne javanica* in six localities and *Meloidogyne incognita* in two localities suggest that it is most common parasite of coriander crop (Sheela et al., 2003). Oilcakes derived from castor and mustard were found to be effective in nematode control.

Moreover the cultivation of coriander in Balochistan is common whereas the research on this plant is still limited, management using oilcakes which are helpful in plant growth due to their capability of promoting *Pseudomonas fluorescens* (Rizvi et al., 2012) were used.

Oilcakes are easily available amendments that cause vigorous growth of beneficial organisms, limiting population of nematode and in turn benefitting the crop in various ways (Sumbul et al., 2015). The oilcakes are rich in proteins and minerals and can be applied directly to the soil in the form of powder or pellets, watered and allowed to decompose. With the passage of time decomposition effect increases (Youssef and El-Nagdi, 2010). Now a days the growers are forced to use the options of nematode control which do not cause pollution or lead to undesirable side effects such as hazard of human health, deterioration of environment and are helpful to non target organisms (Abbas et al., 2015).

The results of this survey provide not only insight concerning important nematode associated with coriander in Balochistan but also an indication of the distribution potential leading to crop damage and suitable control using common oilcakes. In addition the survey results are important information to extension staff as suggested by Khan et al. (2019) for determining the importance alongwith accurate nematode identification when planning effective management strategies.

Conclusion

Numerous phytonematodes have been recorded associated with coriander roots. In view of the nature of this medicinal plant more research can be done in order to increase the yield of this plant. *Meloidogyne* spp. was found in 6 localities from the 10 surveyed. This group of nematodes causes serious threat to coriander crop in Balochistan province and most probably throughout Pakistan in general. Management using oilcakes which are biodegradable alternates to chemical nematicides for control of plant nematodes are recommended.

References

Cobb NA (1893), Nematode worms found attacking sugar cane, *Agricultural gazette of New South Wales* 4: 803-833.

Cobb NA (1913), New nematode genera found inhabiting fresh water and non-brackish soils, *J. Wash. Acad. Sci.* 3: 432-444.

Golden AM (1971), Classification of the genera and higher categories of the order Tylenchina (Nematoda) In: Plant parasitic nematodes. Vol. I. Morphology, anatomy, taxonomy and ecology, Eds. Zuckerman BM,
with the crop. Swapna
in Esfahan, Iran. There is great variation in the distribution of
root-knot nematodes (Nasr-Esfahani
Anwar and McKenry (2012) had recorded
leaves and dried seeds are the most commonly used, among
ayurvedic herb having all parts of plant edible, but fresh
L.) is a well-known
Introduction
2019). Earlier
Analysis of variance was (ANOV A) performed in accordance
taxonomic keys (Siddiqi, 2000).
Genus was counted and identification confirmed with
dish was used under a stereoscopic microscope particular
females after dissecting out from galled roots, observed
in the present survey.
Numerous phytonematodes have been recorded associated
crop damage and suitable control using common oilcakes. In
important nematode associated with coriander in Balochistan
The results of this survey provide not only insight concerning
control which do not cause pollution or lead to undesirable
localities suggest that it is most common parasite of
Meloidogyne incognita
Pakistan J. Zool.
References
anatomy, taxonomy and ecology, Eds. Zuckerman BM,
Plant parasitic nematodes. V ol. I. Morphology,
80-82.
Management and Utilization, Eds. Chen ZX, Chen SY
Nematology: Advances and Perspectives, Nematode
Punjab, Pakistan,
m. sp. which is capable of
Pakistan in general. Management using oilcakes which are
Balochistan province and most probably throughout
nematodes causes serious threat to coriander crop in
increase the yield of this plant.
Meloidogyne javanica
were usually stunted plants and
feeding on roots of crop cause cavities which lead to bloated
yellowing of leaves. Migratory nematodes (Meloidogyne
of nematode infection were usually stunted plants and
of环境和 are helpful to non target organisms

Mai WF and Rohde RA, Academic Press, New York,
USA, pp 191-232.
Goodey JB (1957), Laboratory methods for work with plant
2: 1-47.
Handoo ZA, Khan A and Islam S (2007), A key and
diagnostic compendium to the species of the genus Merlinius Siddiqi, 1970 (Nematoda: Tylenchida) with
description of Merlinius khzdarensis n. sp. associated with date palm, Nematology 9: 251-260. DOI:
org/10.1163/156854107780739045
Husain SI and Khan AM (1977), Boledordus filiformis
nomen novum for B. acutus Husain and Khan, 1974,
Jepson SB (1987), Identification of root-knot nematodes
(Meloidogyne species), 1st Ed. CAB International,
Wallingford, UK.
Kayani MZ, Mukhtar T and Hussain MA (2017), Effects of
southern root knot nematode population densities and
plant age on growth and yield parameters of cucumber,
Crop Protect. 92: 207-212. DOI: org/10.1016/j.
cropro.2016.09.007
Nematodes associated with two species of Mentha
(Lamiaceae) in Balochistan, Pakistan,
Kofoil CA and White AW (1919), A new nematode infection
of man, Journal of the American medical Association
72: 567-569.
Lambert K and Bekal S (2002), Introduction to
plant-parasitic nematodes, The Plant Health Instructor.
DOI: 10.1094/PHI-1-2002-1218-01.
Nasr-Esfahani M, Karimpourfard H and Ahmadi AR (2008),
Studies on the infection of Medicinal plants of
Root-Knot nematodes in Esfahan Province: Brief
Nicol J, Rivoal R, Bolat N, Aktas H, Braun HJ, Mergoum M,
Yildrim AF, Bagci A, Eleckcioglu H and Yahyaouli A
(2002), The frequency and diversity of the cyst and
lesion nematode on wheat in the Turkish Central
Anatolian plateau, J. Nematol. 4: 272.
Ravindra H, Adivappar N, Sehgal M, Soumya DM and
Narasimhamurthy HB (2016), Root-knot nematode
(Meloidogyne spp.) on coriander under shade net
condition from Karnataka, India, Pak. J. Nematol. 34:
63-65.
Rizvi R, Mahmood I, Tiyagi SA and Khan Z (2012), Conjoint
effect of oil-seed cakes and Pseudomonas fluorescens
on growth of chickpea in relation to the management of
55: 801-808. DOI: org/10.1590/S1516-
8913201200060001.
Schuurmans Stekhoven JH and Teunissen RJH (1938),
Nematodes libres terrestres, Exploration du Parc
National Albert. Mission de Witte (1933-1935) 22:
1-229.
Sheela MS, Kumar TS and Sankar A (2003), Incidence of
root-knot Meloidogyne incognita on long coriander,
Eryngium foetidum L. – A new report, Indian J.
Nematol. 33: 181.
Sher SA (1961), Revision of the Hoplolaiminae (Nematoda).
I. Classification of nominal genera and nominal
species, Nematologica. 6: 155-169.
Sher SA (1963), Revision of the Hoplolaiminae (Nematoda).II
Hoplolaimus Daday, 1905 and
Aorolaimus n.gen, Nematologica. 9: 167-295.
Siddiqi MR (1959), Basiria graminophila n.g., n.sp.,
(Nematoda: Tylenchinae) found associated with grass
roots in Aligarh, India, Nematologica. 4: 217-222.
Siddiqi MR (1963), On the diagnosis of the nematode
genera Pslenchus de Man, 1921, and Basiria Siddiqi, 1959,
with a description of Pslenchus hilarus n. sp.
Siddiqi MR (1963), Two new species of the genus,
Helicotylenchus Steiner, 1945 (Nematoda:
Hoplolaiminae), Zeitschrift für Parasitenkunde. 23:
239-244.

Zar JH (2008), Biostatistical analysis, Prentice-Hall, New Jersey, USA.