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Abstract

Following Deissler's theory, the decay for the concentration fluctuation of a dilute contaminant undergoing a first order chemical reaction
in MHD turbulence at times before the final period in presence of dust particle is studied and have considered correlations between fluctu-
ating quantities at two and three point. Two and three point correlation equations are obtained and the set of equations is made to determi-
nate by neglecting the quadruple correlations in comparison to the second and third order correlations. The correlation equations are con-
verted to spectral form by taking their Fourier transforms. Finally we obtained the Decay law of magnetic energy for the concentration fluc-
tuations before the final period in presence of dust particle by integrating the energy spectrum over all wave numbers.
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Introduction

A dust particle in air, or in any other gas, has a much larger
inertia than the equivalent volume of air and will not there-
fore participate readily in turbulent fluctuations. The relative
motion of dust participate and the air will dissipate energy
because of the drag between dust and air, and extract energy
from turbulent intensity is reduced than the Reynolds stress-
es will be decreased and the force required to maintain a
given flow rate will likewise be reduced. (Sarker,1993) dis-
cussed the vorticity covariance of dusty fluid turbulence in a
rotating frame.

(Deissler,1958) developed a theory "decay of homogeneous
turbulence for times before the final period". Using
Deissler's theory, (Loefler and Deissler,1961) studied the
decay of temperature fluctuations in homogeneous turbu-
lence before the final period. In their approach they consid-
ered the two and three-point correlation equations and solved
these equations after neglecting fourth and higher order cor-
relation terms. Using Deissler theory, (Kumar and
Patel,1974) studied the first-order reactant in homogeneous
turbulence before the final period of decay for the case of
multi-point and single-time correlation. (Kumar and
Patel,1975) extended their problem, (Kumar and Patel,1974)
for the case of multi-point and multi-time concentration cor-
relation. (Patel, 1976) also studied in detail the same prob-
lem to carry out the numerical results. (Sarker and
Kishore,1991) studied the decay of MHD turbulence at time
before the final period using (Chandrasakher's rela-
tion,1951). (Sarker and Islam,2001) studied the decay of
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MHD turbulence before the final period for the case of multi-
point and multi-time. (Azad and Sarker,2003) studied the
Decay of MHD turbulence before the final period for the
case of multi-point and multi-time in presence of dust parti-
cle. (Islam and Sarker,2001) studied the first order reactant
in MHD turbulence before the final period of decay for the
case of multi-point and multi-time. (Sarker and Islam,2001)
also studied the first order reactant in MHD turbulence
before the final period of decay.

In our present work, we studied the magnetic field fluctua-
tion of concentration of a dilute contaminant undergoing a
first order chemical reaction in dusty fluid MHD turbulence
before the final period of decay. Here, we have considered
the two-point and three-point correlation equations and
solved these equations after neglecting the fourth-order cor-
relation terms. Finally we obtained the decay law for mag-
netic field energy fluctuation of concentration of dilute con-
taminant undergoing a first order chemical reaction in dusty
fluid MHD turbulence comes out to be

(h?) = exp[—R(t—tO)[A(t—to)‘% +exp[fs]B(t—t0)‘5]

where ¢h?) denotes the total energy (mean square of the
magnetic field fluctuations of concentration), t is the time
and A,B and ty are constants. s is an another arbitrary con-
stant which is defined by the equation (36).
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Basic equations

The equation of motion and continuity for viscous, incom-
pressible MHD dusty fluid turbulent flow are given by
(Chandrasekhar,1951) as

ou 0 o’u,

My 2 (uu, —hh )=-2 f

ot +axk b, ~hho)= + OX, 0X, BACAR)
oh. 9 82h

M (hu —uh)=4

ot o (Mmuhd=A5 o0 @
%+v %——L(v -u,) 3
a - 0X, - m, b ®)
with

U _ v _dh _ (4)
oX,  ox X

The subscripts can take on the values 1, 2 or 3.

Here, u;, turbulent velocity component; h;, magnetic field
fluctuation component, v;, dust velocity component

W& 1) =P+ Len2y.
p 2

total MHD pressure inclusive of potential force;
p(X,t) = hydrodynamic pressure,

p = fluid density,
v .

Py = I magnetic prandtl number,
V

p, =—, prandtl number,
Y

V = kinematic viscosity,

K
Y = ——, thermal diffusivity,
PC,
= (4ruo ), magnetic diffusivity,
Cp, = heat capacity at constant pressure,
€ i = alternating tensor,

N
f = ——, dimension of frequency; N,
p

constant number density of dust particle,

4
m, = —71:R35ps, mass of single spherical dust

* 3
particle of radius Rs,
P =constant density of the material in dust particle,

X, = Space co-ordinate, the subscripts can take on
the values 1, 2 or 3.
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Two-point correlation and spectral equations

Under the conditions that (i) the turbulence and the concen-
tration magnetic field are homogeneous (ii) the chemical
reaction has no effect on the velocity field and (iii) the reac-
tion rate and the magnetic diffusivity are constant, the induc-
tion equation of a magnetic field fluctuation of concentration
of a dilute contaminant undergoing a first order chemical
reaction at the points p and p separated by the vector I could
be written as

2
%_Fuk%_ k%:)‘ ah —Rh (5)
ot oX, oX, 0X, 0%,
and a—h+uk oh k%:l o —Rh, (6)
ot oX, oX, 0X, 0%,

Where R is the constant reaction rate.

Multiplying equation (5) by h; and (6) by h;, adding and tak-
ing ensemble average, we get

ahh) 9 . »
———+—[(uhh;)=<h, uh, >]+ [(Ukhh )—<hu;h)]
o oX
0%(hh 0%(hh
=1[ ( > < >] 2R(hhy ()
0X, 0, 8 X,
Angular bracket «................ y is used to denote an ensemble
average
Using the transformations,
9 __9_29d
ar,  dX, IX ®)

and the Chandrasekhar relations [8]
(u, h,hj)— —~u, h,hj> (u h.h )= (uhh) 9)

Equation (7) becomes

ohh)y 9 . N '
p +2£[<ukhihj> (uihyh;)]

A—31 LY —2R(hh)
or. Jr, " (10)

Now we write equation (10) in spectral form in order to
reduce it to an ordinary differential equation by use of the
following three-dimensional Fourier transforms.

=2

hh @) = [ww @ repfkHIK  a
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Whh ) = [y, @ epfppr @2
Interchanging i and j, points p and then,

(ughh; (1) = Cuhh; (<) = [ (o (k)
expf(K.7) Kk 13)

Substituting of equation (11) to (13) in to equation (10) leads
to the Spectral equation

WD s o4k 0+ 2Ray ()

= 2ik[ oy () —Cayr (=K))] (14
oy (k) . Ry -
—a " 24[K? + l]<zgiw,-(k)>

= 2ik[ <ail//il//} (k) — <akl//iv/|j (=k)] - (15

The tensor equation (15) becomes a scalar equation by con-
traction of the indices iand j

(K K
WJF 2A[K? +§]<t/fil/fi (k)

= 2iK[ oy, (K)) — (o v (—K))] (16)

The term on the right hand side of equation (16) is called
energy transfer term while the second term on the left hand
side is the dissipation term.

Three-point correlation and spectral equations:

Similar Procedure can be used to find the three points corre-
lation equation. For this purpose we take the momentum
equation of dusty fluid MHD turbulence at the point P and
the induction equations of magnetic field fluctuation, gov-
erning the concentration of a dilute contaminant undergoing
a first order chemical reaction at P | and P || separated by
the vectors fand ' as

@ﬂ+uA@i— ﬂll———wa o +f(u -v,)
o Kok ox,  ax o oxax, @D
oh. . oh . ou, o°h, :
—+u -—h r=A——"—-Rh
ot “ox,  “ox, OX, X, ' (18)
Bh} .,ah} "au] azh} .

+ Uk . hk = )u " . th (19)
ot X, oX, oX, 0X,

where W (X, 1) =P+;(h2>, total MHD pressure inclu
p

sive of potential force P (X, ), hydrodynamic pressure; € mki

kN

alternating tensor, f =—— dimension frequency; N, con-

stant number density of dust particle.

Multiplying equation (17) by hi'h} (18) by ujh; and (19)
’
by U|hi, adding and taking ensemble average, we obtain

Auhhy 3 )
— L+ — hh)—<(hhhh)]+—
o + o, Kuuhh;) —¢h hhhi)]+ o

Kuurhh’y = uu )]

+T[<u|ukhihj)—(u.Ujhihj>]

k
a(whih)  9%(uhh)

=— +v

X, 0X, 0%,

[a%u.hﬂwb . aZ<u.hﬂ1}'>}

I>4—l

X, X, OX, 0,
- 2R(u,hihy) + f (uhhy) —(v,hth;)  (20)

Using the transformations

d d 0 d Jd d

J

into equation (20)

ou,hthy)

h'h
M@A+PR,)———
0 arm el

k rk
o%(u,h’h;
<ul| IIJ>+2PM
ar.or,
_a
or,
_ 9
or,

o*(u,hhy)
ar,or,

o 0 o
(uuhih) +=—uu,hh;)
or,

by~ (hh ')
ar,
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d

0 S0 o
9wy L uuh -
ark <u|uk i ]>+ ark <u|u| k J> ark

vy, O ey 0 e 0
(ulukhihj)+a—rk.(u,ujhihj) +a—rl(whihj)+a—rl,(whihj)-

- 2R<Uhi'h‘j'> + [y, hilhlj‘> —(v hilhlj‘>] (22)

In order to write the equation (22) to spectral form, we can
define the following six dimensional Fourier transforms:

WO ) = | [@B® B K

—oo—00

expf (K7 + K7 kak (23

WUNONED = | [0 QBEB K

—o00 —oo

exp E(IZ.F + IZ'.f')]iIZdlz' (24)
(WU (PN (D) = [ [<06; () B, (k)B; (K'))

expf (k.7 +K".7) JIkak (25)

oo oo

WU N = [ [0 BB K

—oco—o0

expE(IZ.fHZ‘.f‘)]iIZdIZ' (26)

O ED = [ [(BBBRB R

—oco—o0

exp[(lz.FHZ'.f')]iIZdIZ' (27)
(wh/(P)h; (7)) = [ [<oB/(K)B; (K))

—oco—o00

exp E(Iz.f + A'.F')]il?dlz' 28)

oo oo

ih{ ()N (P)) = | [<8,B{(K)B; (k"))

—oco—o0

exp E(IZ.F +K F')]JI?dkA' (29)

Interchanging the points P’ and P” along with the indices
iand j, result in the relations

uuzhih) = Cuughihyy, (uulhhy)

=(uu;hhyy,  (uuihyy =Cuuh;) (30)
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By use of this facts(30) and equations (23)-(29), the equation
(22) may be transformed as

Ko, BB
—ﬁ&§¥£l4n4}1+PM)k2+(1+PM)k”

R f O
E‘I](Qﬁiﬁj)

=i(k, +k; )00 B/B;)—i(k, +k;)B B BB,
—i(k, + ki X000 BB ) +i(k, +K)0/BB;)
+i(k, +k|,)<7/ﬁi,ﬁ;>_ f<6lﬁi,ﬁ}> (31)

The tensor equation (31) can be converted to scalar equation
by contraction of the indices i and j

+ 2P, k. k, +2

%ﬂgﬁﬁ+xpy+m)wz+w6+2mkw;

R f o
"’ZI—;](@ﬁiﬁJ
= i(kk + kl:)<¢l¢kﬁi,ﬁi”> - i(kk + kl:)<ﬂl:8kﬂi’ﬁi">
—i(k, + kl:)(¢l¢l:ﬂ|,ﬂ|> +i(k, + k,)<¢l¢i,ﬁi,ﬁi">
+ik, + kBB ) — (5, BB;) (32)

To relate the terms on right hand side of equation (32)
derived from the quadruple correlation  terms and from the
pressure force term in equation (22), we take the derivative
with respect to x; of the momentum equation (17) for the
point p, and combine with the continuity equation to give

9° 02
- <W>: (uluk_hlhk)
0X,0X,  0X,0X,

(33)

Multiplying equation (33) by h;h;, taking time averages and
writing this equation in terms of the independent variables

rand r
2 2 2
d d d "
- +2 + (whih )
oo dnadr’  drory J
L L L L
= + ’ + ’ + 2\, 7
andn,  drdr,  odnadr,  dron

x((ulukh{h})—<h|hkhﬂ1;>) (34
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Now taking the Fourier transforms of equation (34) we get

- <7/.Bi’ﬁ ,> =

(klkk + k(kk u k|k; t k{klz)(<¢l¢kﬁi,ﬁj> - (ﬁlﬁkﬁileﬁ j>)
K2+ 2Kk + Kk

(3%)

Thus the equations (34) and (35) are the spectral equation
corresponding to the three-point correlation equations.
Equation (35) can be used to eliminate (yﬁ,'ﬁl) from the
equation (32).

Solution for times before the final period

It is known that equation for final period of decay is obtained
by considering the two-point correlations after neglecting
the 3rd order correlation terms. To study the decay for times
before the final period, the three point correlations are con-
sidered and the quadruple correlation terms are neglected
because the quadruple correlation terms decays faster than
the lower-order correlation terms. But to get a better picture
of decay of the MHD homogeneous turbulence in presence
of dust particle from its initial period to its final period ,
three-point correlation equations are to be considered. Here,
we neglect the quadruple correlation terms since the decay
faster than the lower order correlation terms.

Putting the value of <7’ﬁ.,ﬂ,> from equation (35) into equa-
tion (32 and neglecting all the quadruple correlation terms,
we have

ot

+ 25 - i:|<¢l ﬁi,ﬁi”> +f(8,B/B;)=0

M+A[(l+ Py )(k* +k"?) + 2P, k ki

A A "
= —a<¢'§tiﬂi ) +l[(1+ Pu)(k? +Kk")

R

fs .
2P k. K +2——— o BBy =0
+ M Tk k+ A‘ A’]<¢|ﬁlﬂl> (36)

where {6,B/B;)=C(¢,8/B) and1-C=S, Cand S are

arbitrary constants.

Taking inner multiplication by k; , we get

%WJJ[(H Pu)(k? +k"*)+ 2P, k.ki

2R fs raty
+7_7:|(K|<¢Iﬁiﬁi>)_o

Integrating the equation (37) between t0 and t, and gives

k(B BB =K (8 BIBYoTexp T AL+ Py )(K? +K)
2R fs

T T]U'to)}

- )/ 2, -
where @ is the angle between kand k”and (¢, 3.6, is
the value of @8,y at t= to.

(37)

+2P, k.k’cos6 (38)

Now, by letting r’ in equation (23) and comparing with equa-
tions (12) and (13), we get

(i (k) = [ BB (kK (39
LA r )
(v () = [0 B/(-K)B; (—k Nk'  (4a0)

Substituting equation (38) - (40) in equation (16), we get
Ayiw, (k)
ot

2

+2A[K 2 + %](y/iy/i' (K)) = _T 2ik,

[<¢,ﬂ’i (K)B; (K)) (9, B; (—IZ'>/3i"(—k”)>}

xexp[—/l{(1+ Py )(k2 +k'2)+2PM Kk cos6 +

2R fs
+—_

Rl —to)]dK‘ a)

Now, d kA'can be expressed in terms of k’ and 6 that is
dK'= —27k"2d (cos 6)dk” (cf. Deissler,1960).

With the above relation, equation (41) to give

Kwiv, (K))

2 R ' <.
. + 2A[k +I]<Wiwi(k)>=2_£°2'k|

[<¢,ﬂ; (KB, () =0, B; (—IZ')ﬂi”(—IZ'»:I
0

1 L}
xk'z[ Iexp{—/l(t ~t)IL+P, )k2 + k'2)+2PM Kk
-1
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(42)

cose+§—E] d(cos ) dK'
A A

In order to find the solution completely and following
(Loeffler and Deissler,1961) we assume that

ik.[<¢.ﬁ:u2)ﬁ;'u2')>—<¢. B (—k”»]

— 50 |[< k/4 k kIZ
(27t

(43)

where &, is a constant depending on the initial conditions.
The negative sign is placed in front of &, in order to make
the transfer of energy from small large wave numbers for
positive value of &,.

Substituting equation (43) into equation (42) and completing
the integration with respect to cos 8 one obtains

werwiy (K) g o &
b LMK+ (2l =
S e () ==

T(skﬁ_kSkf?»)x[exp{—Mt—to)[(H P (K2 +K?)
0

, 2R S
_2PM kk +7—7]} —eXp{—/l(t—to)[(l"‘ PM)

, v 2R fS
(k2 +k 2)+2PM kk +=~ _T]HdK (44)
Multiplying both sides of equation (44) by k?, we get
Mool Rh-c
ot ) (49)

where, H=2 7K 2<l//il//|'( (K)> is the magnetic energy spec-
trum function and G is the magnetic energy transfer term is
given by

3,5 5,3 ,
e tﬂ) j(k K™ —k>k )[exp{ M-t IR,

(K2 +k2) = 2P KK+ 2; ;S]} —exp{—/l(t—to)

[(L+ Py, )(k* +k"*)+ 2P, kk'+2;fQ —f/lS]HdK’ (46)

Integrating equation (46) with respect to K’ , we have
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_goPM\/; fS
G=—p ST el {2r- )
4272 (t-t,) 2@+ P, )2 A

1+ 2P,

’(t_to)]eXp|: At=1)C; ) ]

5p? 3 }

15P, k* 1
|-t ’@+P,) (-t |va+P, ). 2

H

The series of equation (42) contains only even powers of k*
and start with and the equation represents the transfer func-
tion arising owing to consideration of magnetic field at three
points at a time.

P p2
)k6 M
s PM){(1+ P,)> (47)

It is interesting to note that if we integrate equation (47) over
all wave numbers, we find that
! Gdk =0 as)

which indicates that the expression for G satisfies the condi-
tion of continuity and homogeneity.

The linear equation (45) can be solved to give

H = exp[— 22K+ —m] [c exp[zx(kz +)

\(t —to)]dt +J (k)exp[— 22(k? +;)(t _to):| (49)
2
where J(K) =

is a constant of integration and can be
obtained as by (gorrsin,1951). Substituting the values of G
from equation (47) in to equation (49) and integrating with
respect to t, we get

2

H = NoK exp[— 22.(Kk? +%)(t—to)]

ENmpy,

4/13/2(1_’_ PM )7/2

xexp[{2R - S}t —t,)]

rk4
exp| — k241 2P Ly || SRk
@+ pw) 2Ry (t-t,)
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(7py —6)K°
AL+ py )t -t,) ™

_4(3p% —2p,, +3)K°
3L+ pyy )21,

SAy(SpM ~2p, +IK*
3L+ py)™?

N (o) (50)

Alt-t,)

where N(w)=e"" [eXdx, w=k ,
! 1+ pu)

j=i, dK = —27k2d (cos 8)dk and

H = 2nk? <‘I/i‘l’} (K)> in equation (9), we get the expres-
sion for magnetic energy decay with the fluctuating concen-
tration as

h? T A
<2>: :J.Hdk (51)

0
Substituting equation (50) in to (51) and after integration
with respect to k, we get

By setting f =0,

(hihy)

2 /
(h?) N, (t—t,) "
~— =exp[-2R(t -t,)]

2 s

. Eom(t—t,)”
explfS}x¢ 4281+ p,, )(1+2p,, )

5p,, (7p,, —6) 2 _
y i+ MM _35|0,\,|(3|0,\,I 2Py +3)+
16 16(1+2p,,) 8(1+ 2p,, 2

2
8py, 3Py, —2P, +3) 1.35...(2n +9)

)

6 3
32°(A+2py )" N 0n!(2n +122" 1+ IDM)n
2 /
or 0 expl-2R(t—t)]| Nelt)
2 /1/\/%
explfsyE,Z(t-,)" ©
where
T

@+ py )1+ 2Dy )

_[i+5pM (7p|v| _6)_35p|\/| (3p|€/| _2p|v| +3)
16  16(1+2p,,) 8(1+2p,, )°
2 —
L8Pl —2p, +3)
3.2°.(1+2p,,)

Thus the decay law for magnetic energy fluctuation of dusty
fluid MHD turbulence governing the concentration of a
dilute contaminant undergoing a first order chemical reac-
tion before the final period may be written as

(h) = exp[-2R(~t,)]| At~t,) * +

exp[fs}]B(t—tOV] (53
where, A= ~No B=¢,Z
’ 812\2r ’

Results and Discussion

In equation (53) we obtained the decay law for magnetic
energy fluctuation of dusty MHD turbulence governing the
concentration of a dilute contaminant undergoing a first
order chemical reaction before the final period considering
three-point correlation after neglecting quadruple correlation
terms. If the the fluid is clean, i.e. f=0 then the equation (53)
becomes

(h?) = exp[-2R(t —to)][A(t —t,) % 4 B(t —to)-f’]
(54)
which was obtained earlier by (Sarker and Islam,2001)

In absence of chemical reaction, i.e, R=0 then the equation
(54) becomes

-3
<h2>:[A(t—t0) 4+B(t—t0)‘5] (55)
which was obtained earlier by (Sarker and Kishore,1991).

Conclusion

This study shows that due to the effect of dust particles in the
magnetic field with chemical reaction of the first order in the
concentrarion the magnetic field fluctuation i,e.the turbulent
energy decays more rapidly than the energy for clean fluid
and the faster rate is governed by. Here the chemical reaction
(R+0) in dusty fluid MHD turbulence causes the concentra-
tion to decay more they would for clean fluid and it is gov-
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erned by exp [ {2RT,, — fs}]  The first term of right
hand side of equation (53) corresponds to the energy of mag-
netic field fluctuation of concentration for the two-point cor-
relation and the second term represents magnetic energy for
the three-point correlation. In equation (53), the term associ-
ated with the three-point correlation dies out faster than the
two-point correlation. For large times the last term in the
equation (53) becomes negligible, leaving the -3/2 power
decay law for the final period. If higher order correlations are
considered in the analysis, it appears that more terms of
higher power of time would be added to the equation (53).
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