
Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Introduction

High-quality α-Fe2O3,Fe3O4 and γ-Fe2O3 NPs find 
applications in many technologies including in drug 
delivery (Chueh et al., 2006; Zhang et al., 2013) systems 
and functional devices (Mou et al., 2012)  like lithium ion 
batteries (Xu and Zhu, 2012) and so on. The fabrication of 
NPs with a tunable morphology, size and structure is of 
great importance for certain functions (Simol et al., 2016). 
Monodisperse Fe3O4 and γ-Fe2O3NPs deserve special 
attention because of their high performance parameters, 
environmentally friendliness and biocompatibility in areas 
such as biotechnology, ore refining and catalysis (Si et al., 
2005; Yavuz et al., 2006).

Nano Fe2O3 is the most stable ferric oxide chemical 
compound, having n- type semiconducting properties 
(Eg=2.1eV)  (Chen Jianjun, 2010). The compound is 
resistant to light, shows weather resistance and has magnetic 
property. It shows good absorptive capacity to ultraviolet 

radiation. It has also good absorptive flocculating effect 
(Wang Guotian, 2009) and shielding effect to humus 
acid. It can, therefore, be widely used in many important 
fields  like, flocculants (Jia Zhenbin, 2008), flicker 
coating, plastic, leather, electron, automotive topcoat, 
sensor, semiconductor, catalyst and high-magnetic 
recording materials (Chen et al., 2010; Neng-Mei et al., 
2010). Fe3O4 NPs is widely used in electrical-electronic 
devices such as pigments magnetite carrier passivation 
coatings, recording materials and magneto-caloric 
refrigeration  (Salamun et al., 2014). Medical 
applications of Fe3O4 NPs includes, among others, 
biomolecule separation, drug delivery agents, DNA 
detection, magnetic resonance imaging (MRI), 
bio-labeling and contrast agents for NMR imaging. In 
chemical industry, Fe3O4 NPs are used for absorbent, 
catalysis, photo-catalysis and metal separation from 
wastewater (Abu Bakar et al., 2008; Mao et al., 2006).
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Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Synthesis of Fe3O4 and Fe2O3 nanoparticles using hybrid electrochemical-thermal method 55(3) 2020222

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Fig.1. Schematic diagram of the EC cell

Note: 1. Pyrex beaker; 2. Anode; 3. Cathode; 4.
Ammeter; 5. D.C. source; 6. Variable resistance



Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .
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Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Fig. 2. UV–Visible spectrum of iron-oxide NPs calcined
            at different temperatures

Fig. 3. FT-IR spectra of FeO precursor at different
            calcined temperatures

Fig. 4. TG pattern of iron oxide precursor



Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 
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precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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different temperatures
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Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.
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The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Fig. 9. BJH plot of iron-oxide calcined at 400 oC



Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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Iron oxide NPs have been prepared by different methods, 
such as chemical vapour deposition (Chai et al.,1996), pulsed 
laser evaporation (Joshi et al., 1988), reactive sputtering 
(Wilhelm, 1979), hydrothermal technique (Chen et al., 1995) 
and spray pyrolysis (Qian et al., 1991). Furthermore, iron 
oxyhydroxide was synthesized by electro-chemical method 
(Uddin et al., 2007). Recently, a successful method for the 
preparation of ZnO nanoparticles by a hybrid 
electrochemical-thermal method has been reported from our 
laboratory (Hassan et al., 2015; Shohel et al., 2016). 
However, it is still a challenge to develop simple methods for 
the preparation of α-Fe2O3 NPs. In recent years, 
electrochemical route has attracted interest in the synthesis of 
metal oxide NPs and films because of its simplicity, 
low-temperature operation and viability of commercial 
production.

In the present study, Fe3O4 and α-Fe2O3 NPs have been 
prepared by hybrid electrochemical-thermal route without 
using any templates or surfactants. The sample was dried and 
calcined at different temperatures from 100 to 600oC. The 
calcined samples were characterized by FTIR spectroscopy, 
BET surface analysis, UV–Vis absorption spectroscopy and 
TGA techniques, scanning electron microscopy (SEM), 
energy dispersive X-ray spectroscopy (EDS) and powder 
X-ray diffraction (XRD) technique.

Materials and methods

Preparation of iron oxides NPs

All the chemicals used were of analytical grade purity and 
used without any further purification. In a typical synthesis, 
1.46g (0.05M) NaCl (Merck, Germany) was taken in a 
500mL volumetric flux and made up to the mark with 

de-ionized water and then transferred to a Pyrex beaker. Two 
homemade Fe-electrodes supported on a holder made of 
ebonite were placed inside the electrolyte. Schematic 
diagram of EC cell is shown in Fig. 1. Electrolysis was then 
started by passing 2 A current through electrode assembly 
with constant stirring.

From each experiment the black particles were centrifuged, 
washed, filtered and isolated from the solution. The resulting 
particles were calcined at different temperatures from as low 
as 100oC to maximum of 600oC in muffle furnace. A possible 
chemical mechanism can be expressed as follows:

Anode: 2Feo (s)     Fe2+ (aq) + 2e-

2Fe2+ (aq) + 2OH- (aq)      Fe (OH)2 (s) 

Cathode:  2H2O + 2e-          H2 (g)+ 2OH- (aq) 

Overall: Feo (s)+ 2H2O (l)      Fe (OH)2 (s) + H2 (g) 

Reddish brown to red solid particles were found after the 
calcination of iron oxide precursor from 200 – 600oC. 
Among the iron oxide phases involved, maghemite and 
hematite are red, while the others are black. Therefore, color 
of the sample prepared by the hybrid electrochemical 
method suggests the presence of either one or both of these 
phases (Song et al., 2012).

Characterization of Fe2O3 and Fe3O4 NPs

The UV-visible (UV-Vis) spectrum of iron oxide NPs 
dispersed in aqueous medium was recorded using a 
double–beam UV-Vis spectrophotometer (UV- 1800, 
Shimadzu, Japan). For molecular characterization of the 
air-dried and calcined NPs, Fourier Transform Infrared 
Spectrometry (FT-IR, IR- Prestige-21) was used. Appropriate 
quantity of FT-IR grade KBr and sample (100: 0.1) were 
mixed and a pellet was made. FT-IR spectra were recorded in 
the range of 4000-400cm-1.

Thermal analysis of the FeO precursor was done by a 
Thermo-Gravimetric Analysis (TG-DTA 7200, Hitachi, Japan) 
to ascertain the temperature for the conversion of FeO and to 
predict the possible chemical change during calcination. It was 
carried out at a heating rate of 5oC per min from 30 to 900oC in 
an alumina pan under nitrogen atmosphere.

The crystalline structure of the synthesized material was 
characterized by X-ray Diffraction (XRD) using a Rigaku 
(Ultima IV) diffractometer equipped with Cu Kα(λ = 
1.540598 Å) radiation. The XRD pattern was collected in the 
2θ range of 10-80o C in a continuous scan mode with a scan 
speed 3o per minute.

Morphological analyses of prepared samples were carried out 
by JEOL analytical scanning electron microscope, (Model 
JSM-6490LA). Samples were mounted on a round-shaped 
sample stage made of aluminum. The stoichiometry of the 
calcined samples was examined by Energy Dispersive X-Ray 
spectroscopy (EDS, S-3400N, Hitachi, Japan).

Surface area and pore size distribution of the FeO NPs was 
measured by using BET Analyzer (Belsorp mini-II, BEL, 
Japan). FeO NPs were pretreated for 2h at 120oC under N2 gas 
to remove any surface-adsorbed water or gas using a 
pretreated unit (BELPREP-flow-II, BEL, Japan).

Results and discussion

UV-Visible spectroscopic analysis 

Fig. 2 shows the UV-Visible absorption of iron oxide NPs 
dispersed in aqueous medium at different temperatures. 
From UV–Visible spectrum, the characteristic peak 
observed at about 390 nm in air-dry sample is assigned to 
Fe3O4 and while that of Fe2O3 is observed at 570 nm 
(Al-Kady et al., 2011; Beheraet al., 2012; Klačanovį et al, 
2012) . It is observed that particle size increase from Fe3O4 
to Fe2O3 as per inferred from blue shift.

FT-IR spectra

FT-IR spectra were recorded in a transmittance mode on a 
spectrometer (Model IR Prestige-21, Shimadzu) under ambient 
condition in the range of 400-4000cm-1. Fig. 3 shows FT-IR 
spectra of FeO precursor and FeO calcined at different 

temperatures. FT-IR spectrum of iron-oxide nano-particle 
shows that in air dried and the sample calcined at 100 O C shows 
a strong absorption band at 580 cm-1 assigned to  stretching 
vibration of Fe-O functional groups typical of the 
crystalline lattice of magnetite  (Fe3O4)  (Aliahmad and 
Nasiri, 2013; Du et al., 2010; Zhang et al., 2011).

For sample calcined in the range of temperature from 200- 
400oC, absorption band at 580 cm-1 shifted to lower 
wavenumber 562 cm-1 which confirms the formation of 
Fe2O3. The precursor calcined at 600oC show only two 
peaks at 470 and 542 cm-1 revealed the presence of 
characteristic peak for α-Fe2O3 (Arsalani et al., 2010; 
Lorkit et al., 2014; Zheng et al., 2009) .

Presence of other band at 448 cm-1 for magnetite and 448, 
638 cm-1 in hematite indicates the presence of defects in the 
lattice of magnetite and hematite. The peaks at 1630 and 
3420 cm-1 in FT-IR spectra is related to the hydroxyl group.

Thermal analysis

TG pattern of FeO precursor is shown in Fig. 4.  A careful 
examination of the thermogram clearly indicates that there 
are three pronounced mass loss steps in the TG curve. 

The first mass loss step is gradual and below 140oC. The 
mass loss was 1.00%, and this loss of mass is attributed to 
the removal of surface adsorbed and/or crystalline water. 
The second step of mass loss appears between 140–360oC 
indicating mass loss of 1.50 % revealing the removal of 
physically adsorbed crystalline water during 
decomposition of Fe3O4. The third step of weight loss 
appears over 600–750oC and indicates the mass loss of 
0.50 %, thus revealing the complete decomposition of the 

precursor to iron oxide (Fe3O4 to Fe2O3) particles. At 
temperature above 750oC, the weight of sample was 
almost constant, indicating complete phase conversion of 
Fe3O4 into Fe2O3. This phase change was started from 
600oC, therefore, we have new band during FT-IR 
analysis at 570 cm-1 for the sample calcined at 600oC.

XRD analysis

XRD pattern of iron oxide nanoparticles calcined at 
100-600oC are shown in Fig. 5. The XRD pattern of iron 
oxide NPs calcined at 100-400oC show peaks at 2θ = 18, 30, 
35.5, 37, 43, 57, 53, 62.

The diffraction angles of different peaks correspond to Fe3O4 
NPs. This data is in agreement with those reported in the 
ICSD Pattern of Magnetite (Fe3O4), PDF card no: 
01-076-7165. The NPs calcined at 600oC shows peaks at 2θ = 
24, 33, 35.7, 40.9, 49.5, 54, 57.7, 62.5, 64 due to hematite 
phase matched well with the ICSD Pattern of Hematite 
(Fe2O3), PDF card no: 01-076-8404. The X-ray power 
diffraction (XRD) of NPs calcined at 100-300oC confirmed 
that the synthesized product was a magnetite (Al-Kady et al., 
2011; Behera et al., 2012; Chandrappa and Venkatesha, 
2014; Lorkit et al., 2014; Salamun et al., 2014; Yeet al., 
2006) and the precursor calcined at 600oC show the Hematite 
(Al-Kady et al., 2011; Gualtieri and Venturelli, 1999; 
Wolska, 1988) pattern of iron oxide. Interestingly the 
precursor calcined at 400oC show three minor peaks at 2θ of 
24o, 33o and 54o corresponding to the characteristic peaks of 
Hematite (Fe2O3).

SEM and EDS Analysis

Fig. 6 shows SEM images of the as-prepared sample and the 
sample followed by the heat treatment at 100-400°C for 1 h. 
Precursor of FeO exhibits the morphology of the 
spherical-shaped particles with diameter of 80-155nm.

After treatment at 100-400°C for 1h, the annealed sample 
retained the morphology and particle size 80-150nm as the 
as-prepared sample. EDS pattern of iron oxide calcined at 
400oC is shown in Fig. 7.

EDS results confirmed the presence of elements and weight 
composition clearly showed that only Fe and O are present in 
the sample. It is found that the sample contain according to 
mass 20.82 % O and 79.18% Fe.

BET analysis

The adsorption- desorption isotherms and pore size 
distribution of iron-oxide calcined at 400oC are shown in 
Figs. (8-9). The mean pore diameter and the diameter 
distribution were calculated from the adsorption branch of the 
isotherm using the Barrett–Joyner–Halenda (BJH) method. 
The specific surface area was calculated using the 
Brunauer–Emmett–Teller (BET) model. Results point out 
that the synthesized iron-oxide is porous and shows a type of 
IV isotherm.

The BJH pore size distribution plots confirmed that iron 
oxide precursor calcined at 400oC are mostly mesoporous, 
and some micropores and macropores may also be present. 
Furthermore, iron oxide NPs calcined at 400oC has a BET 
surface area of 18.28 m2g-1 with a total pore volume of 
0.2064 ccg-1.

Conclusion

In the present work, the spherical shaped iron oxide (Fe3O4 
and Fe2O3) NPs with BET surface area of 18.28 m2g-1were 
successfully prepared by hybrid electrochemical-thermal 
method without using templates, or surfactants. The Fe 
ions were generated in-situ at the sacrificial Fe electrode 
and were converted into Fe3O4 during electrolysis. During 
calcinations, the as-synthesized Fe3O4 particles are 
converted to Fe2O3  NPs. This method is simple, easy to 
carry out and cost effective. It also gives highly pure 
product and higher yield as well.
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