
better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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Introduction

Advection–diffusion equation is a parabolic partial 
differential equation which is derived on the principle of 
conservation of mass using Fick’s 1st law. Particles, energy, 
or physical quantities are transferred inside a physical system 
due to two processes: advection and diffusion. 
Advection-diffusion equation describes this two process for 
several substances. The solution of this equation estimates 
some of the phenomena such as the contaminant transport in 
groundwater, spread of pollutants in rivers, contaminant 
dispersion in shallow lakes and reservoirs. It also considers 
physical phenomena where in the diffusion process particles 
are moving with certain velocity from higher concentration 
to lower concentration. The analytical and numerical 
solutions along with an initial condition and two boundary 
conditions aid to understand the pollutant concentration 
distribution behavior through an open medium like air, rivers, 
lakes and porous medium. River water pollution can be 
established by one-dimensional advection–diffusion 

equation. It has wide applications in other disciplines too, 
like soil physics, petroleum engineering, chemical 
engineering and biosciences.The finite difference method is 
one of the efficiently implementable numerical method and 
in this methodstability and convergence are important issue 
for obtaining results with good accuracy. To solve the 
advection-diffusion equation numerically, various work have 
been appeared by using the finite difference methods. An 
analytical solution of one dimensional advection-diffusion 
equation with variable coefficients in a finite domain using 
Laplace transformation technique. Researcher Tamora James 
(2002) made a numerical solution of ADE for Radial Flow. 
Romao et al. (2005) presented the finite difference methods of 
3D convection diffusion equation to investigate error in the 
numerical solution of this equation. For this equation, 
Thongmoon and Mckibbin (2006) compared some numerical 
methods and indicated that FTCS and Crank-Nicolson 
scheme give
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better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 
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differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 
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Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Numerical solution of advection-diffusion equation 55(1) 202018

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 
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0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 
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the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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Fig. 7. Concentration distribution at different time for 
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Fig. 8. Concentration distribution at different time for 
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Fig. 6. Convergence of relative error for FTCSCS

Fig. 7. Convergence of relative error for CNS



better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.
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Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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Fig. 10. Concentration distribution by CNS at different diffusion rate and fixed velocity

Fig. 9. Concentration distribution of FTCSCS and CNS at different time



better point-wise solutions than the spline methods. Agusta 
and Bamingbola (2007) studied on the numerical treatment 
of the mathematical model for water pollution. They used 
the implicit centered difference scheme in space and a 
forward difference method in time for the evaluation of the 
generalized transport equation. Changiun et al. (2010) 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model in 
finding the truncation error and found that the obtained 
results from the grey model are better and logical. We 
estimate the relative error and the numerical features of 
the rate of convergence are presented graphically and also 
investigate the efficient numerical scheme for 
advection-diffusion equation. We examine the qualitative 
behavior of the solution of ADE under different 
parameters and examine mathematical models and 
following numerical methods to estimate the pollutants in 
a river at different times and different points using these 
numerical scheme.

Materials and method

Analytic solution of Advection-Diffusion equation

We consider the Advection-Diffusion equation as a Cauchy 
problem

With I.C      

By co-ordinate transformation, the analytic solution of 
advection-diffusion equation is given as

Which is the required solution of advection-diffusion 
equation.

Numerical solution for Advection-Diffusion equation

In order to implement the numerical scheme by finite 
difference method, we discretize the plane with mesh size. 
Grid width and time step are taken individually. The spatial 
and temporal coordinate at the grid point  is defined as

The approximate solution at a discrete set of points

Using Taylor’s series expansion, we discretize the time 
derivative by forward difference formula

The spatial derivative by the 1st order backward difference 
formula

The spatial derivative by the 2nd order centered difference 
formula

The spatial derivative by the 2nd order centered difference 
formula 

Explicit Centered Difference scheme 

Substituting equation (2), (3) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTBSCS technique.

Again substituting equation (2), (4) and (5) into (1), we obtain

Which is known as explicit centered difference scheme by 
FTCSCS technique

Crank-Nicolson scheme 

In numerical analysis the Crank Nicolson method is a finite 
difference method used for numerically solving the partial 

differential equation. The method was developed by John 
Crank and Phyllis Nicolson in the mid 20thcentury for 
Diffusion equation.

Crank Nicolson scheme is a second order scheme which is 
obtained by the discretization of special and temporal

derivative         and           Here we describe the discretization

 of the ADE analogous to Crank Nicolson scheme.

Now discretize the ADE at                      time step as

Discretize the temporal derivative      by central difference

formula by Taylor’s series expansion as

Substracting (9) and (10), we get,

Discretize the spatial derivative           by centered difference

formula. We obtain for (t)th time step

And for (t+k)th time step

Similarly, discretize the spatial derivative             by centered

difference formula for (t)th time step

And for (t+k)th time step

Putting this values in equation (8), we get

Now at a discrete set of points 

Which is known as Crank-Nicolson scheme and it is also 
known as CNS technique.

Stability condition 

By the convex combination we obtain the stability condition 
of FTBSCS and FTCSCS. Equation (6) and (7) implies that 
the new solution is a convex combination of the two previous 
solutions. That is the solution at new time-step is an average 
of the solutions at the previous time-step at the spatial nodes. 
i-1, i and i+1. 

The stability conditions of ADE by ECDS are as follow

Von neumann stability analysis for Crank-Vicolson scheme

In numerical analysis, Von Neumann stability analysis is a 
procedure used to check the stability of finite difference 
scheme. The analysis was developed at Los Alamos 
National Laboratory after having been briefly described 
in a 1947 article by British researchers Crank and 
Nicolson. Later, the method was given a more rigorous 
treatment in an article  co-authored by John Von 
Neumann. The Crank-Nicolson scheme of 
Advection-Diffusion equation is

Since                        and               , it follows that

Consequently the crank-Nicolson method is 
unconditionally stable.

Error estimation and convergence

We compute the relative error between analytic solution and 
numerical solution for FTBSCS, FTCSCS and CNS to 
determine which scheme is best. Now, we compute the relative

error in L1 -norm defined by                                  for all time

where is ce and cN are the exact solution and numerical 
solution computed by finite difference scheme.

Result and discussion

Relative error for FTBSCS, FTCSCS and CNS

We present finite difference schemes for u=0.3m/s and  
D=.005m2/s up to time  second in temporal  grid size in 
spatial domain [0, 50] with spatial grid size, which satisfy the 
stability condition.

Figure  1 to 3, we present concentration distribution by using 
FTBSCS, FTCSCS and CNS for c=0.3 and  D=.005 upto 
time t=60 second in temporal grid size ∆t=0.06 in spatial 
domain [0, 50] with spatial grid size ∆x=0.1. Figure 4shows 
the comparison of relative error for three finite difference 
scheme. The relative error for FTBSCS below 0.0011, 
FTCSCS remains below 0.0005 and CNS remains below 

0.00023. From this figure, we notice that Crank-Nicolson 
scheme provides more accurate results than the FTBSCS and 
FTCSCS scheme. 

Convergence of relative error 

The convergence of relative error by the scheme FTBSCS, 
FTCSCS and CNS are shown in here. The error for different 
temporal and spatial step sizes are computed as established in 
the following figure 5 to 7.

We observe that error reduces for smaller ∆t and ∆x and 
FTCSCS and CNS shows goodrate of convergence. We 
therefore apply these two schemes for the estimation of river 
pollutants.

Estimation of river pollution

In this section, we present numerical simulation results for 
pollutant transportation with time increasing by FTCSCS. 
The following figure 7 shows how the pollutant concentration 
dispersed in a river with increase in time. River pollution 
occurs when pollutants are discharged directly into water 
bodies without treating it first.

 

Figure 7 shows the curve marked by “solid line” shows the 
concentration profile for 15 second, “dash line” represents the 
concentration profile for 30 second  “the solid cross line” 
shows the concentration profile for 45 second, and “dot cross 
line” represents theconcentration profile for 60 second. We 
have seen that the pollutant concentration is increasing with 
respect to time.

Figure 8 shows the curve identified by “dash line” shows the 
concentration profile for x=4m and “dash dot line” represents 

the concentration profile for x=8m “solid line” shows the 
concentration profile for x=12m and the “dot line” curved 
represents the concentration profile for x=16m, “last solid 
line” shows the concentration for x=20m. Finally, we say that 
the pollutant concentration is increased in a still position with 
respect to time.  

We consider zero boundary conditions at both the boundaries 
for Crank Nicolson scheme.

The following figure 9 to 11 shows that the river 
pollution are spreading with varying the diffusion term 
and advection term with respect to time and space for 
zero boundaries. We notice that no new pollution is 
being added. We estimate river pollution by 
Crank-Nicolson scheme for other boundaries and we 
leave it for future implementation.

Conclusion

In this paper numerical solution of advection-diffusion 
equation have been presented by finite difference 
scheme.The stability analysis for the three difference scheme 
FTBSCS, FTCSCS and CNS is presented. We present the 
error estimation graphically which shows that CNS produces 
more accurate results. Nevertheless FTCSCS and CNS 
shows good rate of convergence. These two schemes 
areapplied to demonstrate the pollutant distribution in a river 
for different time and space co-ordinates.
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Fig. 11. Concentration distribution of CNS varying both the velocity and diffusion coefficient


