Molecular characterization of oil seed *Brassica* using RAPD markers

M. Islam¹, A. Habib¹, S. Khan¹, S. Akter¹, B. Goswami¹, H. Khan² and T. A. Banu¹

¹Plant Tissue Culture Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh

²Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh

Abstract

Twelve varieties of oil seed *Brassica* spp. were characterized at molecular level using Random Amplified Polymorphic DNA (RAPD) primers to explore genetic diversity and to find out relationship among them. Twelve random primers used in the study generated 94 RAPD fragments and 53 (56.38%) of them were considered as polymorphic indicating high level of polymorphism within the materials. The size of amplified fragments ranged between 300-3000 bp. The values of pair-wise genetic distance ranged from 0.1613 to 0.5543. To find out phylogetic relationships among the varieties, dendrogram based on Nei’s genetic distance was constructed using Unweighted Pair Group Method of Arithmetic Means (UPGMA) separating the 12 *Brassica* spp into two major clusters C₁ and C₂. This result will be useful for designing future breeding programmes for improvement of *Brassica* varieties.

Keywords: *Brassica*; RAPD markers; PCR; Polymorphisms

Introduction

Economically, *Brassica* (Fam.: *Brassicaceae*) is categorized into oilseed, vegetable and condiment crops (Ghosh et al., 2009). Oilseed *Brassica* ranks third after soybean and palm oil in the global production (McVetty and Duncan, 2015). In this sub-continent three species of *Brassica*, namely, rapeseed, (*Brassica rapa*, Syn. *Brassica campestris* L.); mustard (*Brassica juncea* L. and *Brassica napus* L.) are cultivated for the production of oil. The varieties of *B. nigra* and *B. carinata* are also known as mustard but it is not commercially cultivated in Bangladesh. *Brassica* represented by rapeseed and mustard plays a vital role in vegetable oil production in Bangladesh. It is the most important edible oil crop, which covers the highest acreage of 66% of the total oil seed acreage of Bangladesh (BBS, 2010). This crop is mostly grown under residual soil moisture in winter season and due to the lack of using improved varieties as well as poor cultural practices, the average yield is quite lower than that in the developed countries (Hasanuzzaman et al., 2008).

The probable origin of *Brassica* was in the Mediterranean-middle eastern area and a secondary centre of origin and differentiation of the species *B. rapa* and *B. juncea* was appears in China (Nishi, 1980). Since their introduction into China thousands of years ago, these two species have remarkably been changed in forms, structure and productivity by domestication. As a result of the allogamous breeding system in *Brassica*, there is a large amount of morphological variability in the many sub-species, botanical varieties and cultivar groups of *B. rapa* and *B. juncea* (Li, 1981; Lee, 1982; Opena et al., 1988).

Therefore, assessment of genetic variability is a first step for the future breeding program specially like these naturally synthesized complex crop species *Brassica*. Improvements through genetical manner have largely been contributed to the high productivity of many crops. However, breeders tend to concentrate on specific genotypes, which combine traits of

*Corresponding author e-mail: tanzinabcsir@yahoo.com
interest and could be used as progenitors in several breeding programs. With the development of a wide range of molecular techniques, marker assisted breeding is now used to enhance flexibility, selection of the breeding materials of conventional breeding programs in crop improvement (Frey et al., 2004; Lu et al., 2004). Among them, RAPD markers, generated by the polymerase chain reaction (PCR) has widely been used to assess intra-specific genetic variation at molecular level (Williams et al., 1990). In some recent studies on Brassica crops, RAPD technique has successfully been used to determine the genetic relationships with different related species (Ren et al., 1995); to identify cultivars (Hu and Quiros, 1991) and genetic diversity analysis among the crop germplasm (Teklewold and Becker, 2006; Ahmad et al., 2009). Moreover, the main advantages of RAPD over other molecular methods are the low sample DNA requirements, high frequency of detectable polymorphic DNA bands and independent from the effects of environmental factors (Kuras et al., 2004).

Although there are many varieties of Brassica spp. available in Bangladesh, but the present varieties are mostly characterized on the basis of their morphological features. Therefore, an authentic characterization and streamlining of these varieties are needed. RAPD is an efficient method for varietal identification, study of polymorphism, gene mapping, biodiversity, genetic map construction, hybridization and phylogenetic relationship in mustard varieties (Sharma and Sharma, 1999). The aims of the present study were to characterize the varieties of Brassica spp. which are commonly grown in Bangladesh using RAPD primers. The main goal was to elucidate the phylogenetic relationship among Brassica spp on the basis of their molecular data by PCR based RAPD technique.

Materials and methods

A total of 12 varieties of Brassica spp. namely Brassica campestris var. BARI Sarisha-1 (Tori-7), Brassica juncea var. BARI Sarisha-2 (Rai-5), Brassica campestris var. BARI Sarisha-6 (Dhali), Brassica campestris var. BARI Sarisha-9 Brassica juncea var., BARI sarisha-10, Brassica juncea var. BARI Sarisha-11, Brassica campestris var. BARI Sarisha-12, Brassica napus var. BARI Sarisha-13, Brassica campestris var. BARI Sarisha-14, Brassica campestris var. BARI Sarisha-15, Brassica juncea var. BARI Sarisha-16 and Brassica campestris var. BARI Sarisha-17 were investigated in this study. These 12 varieties of Brassica were collected from Bangladesh Agricultural Research Institute (BARI), Gazipur. The experiment was performed in the Tissue Culture Laboratory of Bangladesh Council of Scientific and Industrial Research, (BCSIR), Dhaka-1205. To extract genomic DNA, young and actively growing fresh leaves were collected from each of the 12 varieties of Brassica spp. seedlings. Total genomic DNA was extracted by using a modified CTAB method (Doyle and Doyle, 1987). DNA quality was checked by electrophoresis in 1% agarose gel and quantified through a spectrophotometer (Analylikjena, Specord 50, Germany) at 260 nm wave length.

To perform RAPD analysis, seventeen decamer primers (Operon Technology, USA and Sigma, USA) were applied of which twelve primers exhibited good quality banding patterns and sufficient variability. These twelve primers were selected for further analysis. The details of the twelve primers were given in Table I.

Table I. Twelve arbitrary primers (RAPD primers) used in the present study

<table>
<thead>
<tr>
<th>Primer code</th>
<th>Sequence (5’—3’)</th>
<th>Anneal. temp.(°C)</th>
<th>G+C content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA-1</td>
<td>CAG GCC CTT C</td>
<td>36.4</td>
<td>70</td>
</tr>
<tr>
<td>OPA-2</td>
<td>TGC CGA GCT G</td>
<td>40.7</td>
<td>70</td>
</tr>
<tr>
<td>OPA-4</td>
<td>AAT CGG GCT G</td>
<td>35.1</td>
<td>60</td>
</tr>
<tr>
<td>OPA-5</td>
<td>AGG GGT CTT G</td>
<td>32.6</td>
<td>60</td>
</tr>
<tr>
<td>OPA-6</td>
<td>GGT CCC TGA C</td>
<td>35.2</td>
<td>70</td>
</tr>
<tr>
<td>OPA-7</td>
<td>GAA ACG GGT G</td>
<td>34.1</td>
<td>60</td>
</tr>
<tr>
<td>OPA-10</td>
<td>GTG ATC GCA G</td>
<td>33.1</td>
<td>60</td>
</tr>
<tr>
<td>OPG-02</td>
<td>GGC ACT GAGG</td>
<td>33.6</td>
<td>70</td>
</tr>
<tr>
<td>OPG-19</td>
<td>GTC AGG GCA A</td>
<td>34.7</td>
<td>60</td>
</tr>
<tr>
<td>UBC-3</td>
<td>CCT GGG CTT T</td>
<td>35.2</td>
<td>60</td>
</tr>
<tr>
<td>UBC-336</td>
<td>GCC ACG GAG A</td>
<td>39.8</td>
<td>70</td>
</tr>
<tr>
<td>UBC-355</td>
<td>GTA TGG GGC T</td>
<td>32.7</td>
<td>60</td>
</tr>
</tbody>
</table>
The following components were used to prepare 25 μl PCR cocktail-Taq buffer A 10x (10 mMTris-HCl with1.5 mM MgCl2) - 2.5 μl; primer (10 μM) - 1.0 μl; dNTPs mix (10 mM) - 0.5 μl; Taq DNA polymerase (5 U/μl) - 0.2 μl; Template DNA (25 ng/μl) - 2 μl and sterile de-ionized distilled water- 18.8 μl.DNA amplification is carried out in Thermal cycler (Applied Biosystems, USA) for 35 cycles after initial denature at 95°C for 5 min, denature at 95°C for 1 min, annealing at 30-36°C for 30 sec, extension at 72°C for 3 min and final extension at 72°C for 5 min. The amplified products were separated by electrophoresis in 1% agarose gel. DNA bands were observed on UV-transilluminator and photographed by a gel documentation system (MS major science UVDA). The photographs were critically examined on the basis of presence (1) or absence (0), size of bands and overall polymorphism of bands. The scores obtained using all primers in the RAPD markers analysis were pooled for constructing a single data matrix. This was used for estimating polymorphic loci, Nei’s (1972) gene diversity, genetic distance (D) and constructing a UPGMA (Unweighted Pair Group Method of Arithmetic Means) dendrogram among the germplasm using computer program “POPGENE 32” (Version 1.32).

Results and discussion

Twelve oligo-nucleotide primer combinations, namely, OPA-1, OPA-2, OPA-4, OPA-5, OPA-6, OPA-7, OPA-10, OPG-2, OPG-19, UBC-3, UBC-336 and UBC-355 were used for RAPD analysis of 12 Brassica varieties. Each primer combination showed different banding patterns. The 12 Brassica varieties selected for the present study represent a broad spectrum of variation for several phenotypic traits. The primer sequence, band size and banding pattern of 12 Brassica spp. varieties were shown in Table II. Fig. 1 showed the amplification profiles generated with the 12 primers across the 12 Brassica varieties.

<table>
<thead>
<tr>
<th>Primer Sequences (5’—3’)</th>
<th>Total fragment or loci</th>
<th>Size ranges (bp)</th>
<th>Number of Polymorphic loci</th>
<th>Polymorphisms (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAG GCC CTT C</td>
<td>12</td>
<td>300-3000</td>
<td>8</td>
<td>66.66</td>
</tr>
<tr>
<td>TGC CGA GCT C</td>
<td>7</td>
<td>500-2250</td>
<td>6</td>
<td>85.71</td>
</tr>
<tr>
<td>AAT CGG GCT G</td>
<td>12</td>
<td>300-2000</td>
<td>10</td>
<td>83.33</td>
</tr>
<tr>
<td>AGG GGT CTT G</td>
<td>9</td>
<td>500-3000</td>
<td>7</td>
<td>77.78</td>
</tr>
<tr>
<td>GGT CCC TGA C</td>
<td>2</td>
<td>1300-1600</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>GAA ACG GGT G</td>
<td>4</td>
<td>1500-3000</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>GTG ATC GCA G</td>
<td>13</td>
<td>250-2000</td>
<td>3</td>
<td>23.07</td>
</tr>
<tr>
<td>GGC ACT GAG G</td>
<td>6</td>
<td>500-1700</td>
<td>4</td>
<td>66.67</td>
</tr>
<tr>
<td>GTC AGG GCA A</td>
<td>7</td>
<td>500-2000</td>
<td>5</td>
<td>71.43</td>
</tr>
<tr>
<td>CCT GGG CTT A</td>
<td>9</td>
<td>300-2500</td>
<td>3</td>
<td>33.33</td>
</tr>
<tr>
<td>GCC ACG GAG A</td>
<td>3</td>
<td>500-1200</td>
<td>1</td>
<td>33.33</td>
</tr>
<tr>
<td>GTA TGG GCC T</td>
<td>10</td>
<td>300-1500</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>53</td>
<td></td>
<td>56.38</td>
</tr>
</tbody>
</table>

Only 3 common bands of two sizes (500 and 800 bp) were observed in three primer combinations namely OPA-2, primer-UBC-3 and primer-UBC-355 (Fig. 1: b, j and l.). The different sized common band indicated the sharing of similar DNA fragments among 12 varieties. Although these varieties had some common RAPD bands, sufficient polymorphisms regarding RAPD fragments were observed.
The twelve random primers generated 94 RAPD fragments or loci of which 53 (56.38%) were considered as polymorphic and this indicated significant level of polymorphism existed within population. Ali et al. (2007) scored a significant degree of polymorphism in 15 mustard (Brassica juncea L.) germplasms using RAPD markers. The molecular weight of bands analyzed by them ranged from 100 to 7000 bp of which 59.36% were polymorphic. Ahmad et al. (2007) reported 59% and 60.09% polymorphism in B. napus L. and Brassica campestris L. lines, respectively. Usunova et al. (1995) observed less than 45% level of polymorphism in different varieties of Brassica napus.

The RAPD fragments size ranges were 300-3000 bp. The number of amplification products generated by each primer varied from 2 (OPA-6) to 13 (OPA-10) with an average of

Fig. 1. RAPD analyses of 12 Brassica spp. Varieties. (a) RAPD analysis with primer OPA-1, (b) RAPD analysis with primer OPA-2, (c) RAPD analysis with primer OPA-4, (d) RAPD analysis with primer OPA-5, (e) RAPD analysis with primer OPA-6, (f) RAPD analysis with primer OPA-7, (g) RAPD analysis with primer OPA-10, (h) RAPD analysis with primer OPG-2, (i) RAPD analysis with primer OPG-19, (j) RAPD analysis with primer UBC-3, (k) RAPD analysis with primer UBC-336, (l) RAPD analysis with primer UBC-355.
7.83 bands per primer. Primer OPA-2 showed the highest percentage of polymorphism (85.71%) while lowest percentage of polymorphism was observed using primer UBC-355 (20%) (Table-II). Light and bright bands were produced in the RAPD reactions. Light bands produced from low homology between the primer and the pairing site on the DNA strand (Thorunn et al., 1994). Saha et al. (2008) reported the presence of polymorphic bands in nine Brassica varieties have had range from 212 to 2272 bp in size and got highest proportion of polymorphic loci (37.29%). Ahmad et al (2009) reported 97.70% polymorphism 20 genotypes of Brassica juncea and the amplified amplicons were ranged

Based on Nei’s (1972) genetic distance, a dendrogram was prepared using UPGMA where the 12 Brassica varieties were segregated into two cluster or groups C1 and C2 (Fig. 2). The major cluster could be divided into two sub-cluster in which first sub-cluster included three Brassica varieties of B. campestris namely BARI Sarisha-1, BARI Sarisha-2 and B. juncea BARI Sarisha-6 while the second sub-group included rest of the varieties (Fig. 2). The second subgroup was further divided into sub-subclasters. The values of pair-wise comparison Nei’s (1972) genetic distance among 12 Brassica varieties computed from combined data from the twelve RAPD primers ranged from 0.1613 to 0.5543 (Table III). The

![Genetic distance dendrogram](image)

Fig. 2. UPGMA dendrogram constructed based on Nei’s (1972) genetic distance summarizing data on differentiation among 12 varieties of Brassica Spp. In which, Brassica campestris var. BARI Sarisha-1 (Tori-7), Brassica juncea var. BARI Sarisha-2 (Rai-5), Brassica campestris var. BARI Sarisha-6 (Dhali), Brassica campestris var. BARI Sarisha-9, Brassica juncea var., BARI sarisha-10, Brassica juncea var. BARI Sarisha-11, Brassica campestris var. BARI Sarisha-12, Brassica napus var. BARI Sarisha-13, Brassica campestris var. BARI Sarisha-14, Brassica campestris var. BARI Sarisha-15, Brassica juncea var. BARI Sarisha-16 and Brassica campestris var. BARI Sarisha-17

from 0.1 kb to 5.1 kb. A narrower range of genetic diversity has also been formerly documented by Yuan et al. (2004), Astarini et al. (2004) in B. napus and B. oleracea respectively. A diverse level of polymorphism in different crops has been reported such as chickpea 98.14% (Rasool, 2013), peanut 96% (Lang and Hang, 2007), eggplant 57.89% (Biswa et al., 2009) and chilli 90% (Paran et al., 1998).
Table III. Summary of Nei’s (1972) genetic distances of 12 varieties of Brassica spp

<table>
<thead>
<tr>
<th>Varieties</th>
<th>BS-1</th>
<th>BS-2</th>
<th>BS-6</th>
<th>BS-9</th>
<th>BS-10</th>
<th>BS-11</th>
<th>BS-12</th>
<th>BS-13</th>
<th>BS-14</th>
<th>BS-15</th>
<th>BS-16</th>
<th>BS-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS-1</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>BS-2</td>
<td>0.3386</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>BS-6</td>
<td>0.2126</td>
<td>0.3386</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-9</td>
<td>0.4490</td>
<td>0.2806</td>
<td>0.5179</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-10</td>
<td>0.3238</td>
<td>0.4002</td>
<td>0.3238</td>
<td>0.4490</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-11</td>
<td>0.3689</td>
<td>0.1866</td>
<td>0.3689</td>
<td>0.2528</td>
<td>0.3689</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-12</td>
<td>0.4658</td>
<td>0.2948</td>
<td>0.5002</td>
<td>0.1995</td>
<td>0.3092</td>
<td>0.1866</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-13</td>
<td>0.3536</td>
<td>0.4324</td>
<td>0.4490</td>
<td>0.3536</td>
<td>0.4162</td>
<td>0.3386</td>
<td>0.3092</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-14</td>
<td>0.5002</td>
<td>0.2392</td>
<td>0.5002</td>
<td>0.3092</td>
<td>0.5002</td>
<td>0.2666</td>
<td>0.3536</td>
<td>0.4658</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-15</td>
<td>0.4002</td>
<td>0.1866</td>
<td>0.4324</td>
<td>0.2806</td>
<td>0.4658</td>
<td>0.2126</td>
<td>0.3238</td>
<td>0.4002</td>
<td>0.1613</td>
<td>*****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS-16</td>
<td>0.4490</td>
<td>0.4002</td>
<td>0.3844</td>
<td>0.5179</td>
<td>0.3844</td>
<td>0.3689</td>
<td>0.4324</td>
<td>0.5179</td>
<td>0.4658</td>
<td>0.3689</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>BS-17</td>
<td>0.5179</td>
<td>0.2258</td>
<td>0.5179</td>
<td>0.3844</td>
<td>0.5543</td>
<td>0.3092</td>
<td>0.4002</td>
<td>0.4829</td>
<td>0.3092</td>
<td>0.1995</td>
<td>0.3536</td>
<td>*****</td>
</tr>
</tbody>
</table>

Here,
0.5543 indicates the highest genetic distance and 0.1613 showed the lowest genetic distance between two different varieties of Brassica spp.

BS-1 = Brassica campestris var. BARI Sarisha-1 (Tori-7), BS-2 = Brassica juncea var. BARI Sarisha-2 (Rai-5), BS-6 = Brassica campestris var. BARI Sarisha-6 (Dhal), BS-9 = Brassica campestris var. BARI Sarisha-9, BS-10 = Brassica juncea var., BARI Sarisha-10, BS-11 = Brassica juncea var. BARI Sarisha-11, BS-12 = Brassica campestris var. BARI Sarisha-12, BS-13 = Brassica napus var. BARI Sarisha-13, BS-14 = Brassica campestris var. BARI Sarisha-14, BS-15 = Brassica campestris var. BARI Sarisha-14, BS-16 = Brassica juncea var. BARI Sarisha-16, BS-17 = Brassica campestris var. BARI Sarisha-17.

Genetic distance values between varieties pair were found due to difference in genetic constituent. The varieties of lowest genetic distance can be used as parental source for breeding line to improve mustard varieties. Ghosh et al. (2009) reported wide genetic diversity ranging from 0.049 to 0.768 among 8 genus of Brassica varieties in Bangladesh. Iqbal et al. (2015) reported genetic distance ranged from 0.1054 to 0.9862 among the 16 mustards varieties of Bangladesh according to the values of pair-wise comparison of Nei’s.

Conclusion

The results of the present investigation showed high level of polymorphisms (56.38%) among the twelve varieties of Brassica. Broad range of polymorphism revealed wide variability in Brassica spp. variety. This observed variability would be helpful for future breeding program to improve Brassica varieties in Bangladesh.

Reference

diversity of rapeseed germplasm using RAPD markers, Biotechnol. 6(3): 334-338. DOI: 10.3923/ biotech. 2007.334-338

Lang NT and Hang PTC (2007), Genetic divergence analysis on peanut by RAPDs, Omonrice 15: 174-178. https://www.academia.edu/6842718

Lee SH (1982), Vegetable growing in China, Scientia Hortn 17: 201-209. DOI: 10.1016/0304-4238(82)90041-3

Nei M (1972), Genetic distance between populations, American Naturalist 106: 283-292. DOI: org/ 10.1086/282771

Opena RT, Kuo CG and Yoon JY (1988), Breeding and seed production of Chinese cabbage in the tropicsand
interest and could be used as progenitors in several breeding
DNA requirements, high frequency of detectable RAPD over other molecular methods are the low sample
cultivars (Hu and Quiros, 1991) and genetic diversity been used to determine the genetic relationships with
molecular level (Williams pp. which are commonly grown in Bangladesh
campestris var. Brassica BARI Sarisha-17 were investigated
from Bangladesh Agricultural Research Institute (BARI),
BARI Sarisha-2 (Rai-5), BARI Sarisha-13, BARI Sarisha-1 (Tori-7),
min and final extension at 72 oC for 5 min. The amplified
generated by the polymerase chain reaction (PCR) has widely
polymorphism, gene mapping, biodiversity, genetic map
spp. available quantified through a spectrophotometer (Analylikjena,
quality was checked by electrophoresis in 1% agarose gel and
Gazipur. The experiment was performed in the Tissue

Brassica campestris var. Brassica

Twelve oligo-nucleotide primer combinations, namely,

Results and discussion

bands analyzed by them ranged from 100 to 7000 bp of which
degree of polymorphism in 15 mustard (Brassica napus).
Astarini et al., (2004), Efficient

A diverse level of polymorphism in different

Astarini IA, Plummer JA, Lancaster RA and Guijun Y
K. Hinata K, Gomez-Campo

Airina IA, Plummer JA, Lancaster RA and Guijun Y

Ahmad Nishi S (1980), Differentiation of

Sharma A. K. and A. Sharma, (1999), Plant Chromosomes

Teklewold A and Becker HC (2006), Geographic pattern of
genetic diversity among 43 Ethiopian mustard (Brassica carinata A. Braun) accesses as revealed
by RAPD analysis, Genet. Resour. Crop Evo. 153:

Thormann CE, Ferreira E, Camargo LEA, Tivang JG and
Osborn TC (1994), Comparison of RFLP and RAPD
markers to estimating genetic relationships within and
among cruciferous species, Theor Appl Genet 88:
973-980. DOI: 10.1007/BF00220804.

Mapping of the genome of rapeseed. Brassica napus L.
I. Construction of an RFLP linkage map of localization
of QTLs for seed glucosinolate content, Theor. and
Applied Genet. 90: 194-204. DOI: 10.1007/
BF00222202.

Williams JGK, Kubelik AE, Levak KJ, Rafalski JA and
Tingey SC (1990), DNA polymorphisms amplified by
arbitrary primers are useful as genetic markers,
Nucleic Acids Res. 28: 6531-6535. DOI:10.1093/
nar/18.22.6531

Yuan M, Zhou Y and Liu D (2004), Genetic diversity among
populations and breeding lines from recurrent
selection in Brassica napus as revealed by RAPD
markers, Plant Breed. 123: 9-12. DOI: org/10.1046/j.0179-9541.2003.00903.x