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Abstract

Using Deissler's approach the Decay of temperature fluctuations in MHD turbulence before the final period in a rotating system is studied
and have considered correlations between fluctuating quantities at two and three point. In this case two and three-point correlation equations
in a rotating system is obtained and the set of equations is made to determinate by neglecting the quadruple correlations in comparison to
the second and third order correlations. The correlation equations are converted to special form by taking their Fourier-transforms. Finally
integrating the energy spectrum over all wave numbers the energy decay law of temperature fluctuations in MHD turbulence before the final

period in a rotating system is obtained.
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Introduction

Deissler (1958 and 1960) developed a theory for homoge-
neous turbulence, which was valid for times before the final
period. Using Deissler's theory Loeffler and Deissler (1961)
studied the decay of temperature fluctuations in homoge-
neous turbulence before the final period. Following
Deissler's approach Sarker and Islam (2001) also studied the
decay of temperature fluctuations in homogeneous turbu-
lence before the final period for the case of multi-point and
multi-time. Sarker and L. Rahman (1998) studied the decay
of temperature fluctuations in MHD turbulence before the
final period. Islam and Sarker (2001) studied the first order
reactant in MHD turbulence before the final period of decay
for the case of multi-point and multi-time. Kumar and Patel
(1975) also studied on fist-order reactant in homogeneous
turbulence before the final period of decay for the case of
multipoint and multi-time. Sarker and Islam (2001) studied
the decay of MHD turbulence before the final period for the
case of multi-point and multi-time. Further work along this
same line for the case of multi-point and single time had
been done by Sarker and Kishore (1991).

In their approach they considered two and three-point corre-
lations after neglecting higher order correlation terms com-
pared to the second-and third-order correlation terms.

Kishore and Dixit (1979), Kishore and Singh (1984) dis-
cussed the effect of coriolis force on acceleration covariance
in ordinary and MHD turbulence. Shimomura and
Yoshizawa (1986), Shimomura (1986 and 1989) also
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discussed the statistical analysis of turbulent viscosity, turbu-
lent scalar flux and turbulent shear flows respectively in a
rotating system by two-scale direct interaction approach.
Sarker and Islam (2001) studied the decay of dusty fluid tur-
bulence before the final period in rotating system. Azad,
Sarker and Mondol (2006) studied the decay of temperature
fluctuations in dusty fluid MHD turbulence before the final
period in a rotating system and also Azad and Sarker (2003)
decay of MHD turbulence before the final period for the case
of multi-point and multi-time in presence of dust particle has
more recently been done by Azad and Sarker (2003).

By analyzing the above theories we have studied the decay
of temperature fluctuations in MHD turbulence before the
final period in a rotating system using two-and three-point
correlation equations neglecting fourth order correlation
terms compared to the second-and third-order correlation
terms. Finally, the energy decay law of temperature fluctua-
tions in MHD turbulence before the final period in a rotating
system is obtained.

Basic Equations

The equation of motion and continuity for viscous, incom-
pressible MHD turbulent flow in a rotating system are given

by
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and the equation of energy for an incompressible fluid with
constant properties and for negligible frictional heating.
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The subscripts can take on the values 1, 2 or 3.

(®)

Here,

u;, turbulent velocity component; hi, magnetic field fluctua-
tion component,

wx ) =Pr Loy s Lok
p 2 2

' total MHD pressure

inclusive of potential and centrifugal force,

p(X,t) = hydro-dynamic pressure,
P = fluid density,

1%
Py = ;, magnetic Prandtl number,

1%
P, =— Prandtl number,

V = kinematic viscosity,
Y = —, thermal diffusivity,
P,
A = (Amuo ), magnetic diffusivity,

C, = heat capacity at constant pressure ,
€2 . = constant angular velocity components,

€mk ~ alternating tensor,

4
m, = g”RSPs’ mass of single spherical

dust particle of radius R s,
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P = constant density of the material

in dust particle,
Xy = Space co-ordinate, the subscripts
can take on the values 1, 2 or 3.

Two-point Correlation and Spectral Equations

The induction equation of a magnetic field at the point p is

oh, oh, ou, v a°h

= T Uk — = --- (6)
ot oX, X, Py XX,

and the energy equation at the point p’ is
oT! oT/ 0°T!

4w ) — L b (7)

ot “ox. p, ox.ox

The points pand P' are separated by the vector I
is shown bellow

p——p’
Multiplying equation (6) by T and (7) by h; adding
and taking ensemble average, we get
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\
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Angular bracket ¢...........c....... y is used to denote an ensemble
average.
The continuity equation is
ou, auy
R ©)
X, X,

Substituting equation (4.4) in to equation (4.3) yields

onTy) | HKuhT]) AUNTS)  KuhT)

ot oX, ox;, oX,
2 ’ 2 ’
_, | L IXhT) 10 <,hiT£> | 10)
Pu OXOX, P, 9X.0X

Using the transformations
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and the Chandrasekhar relations (1951a)

UhT))=—uhT))
in to equation (10) one obtains
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Now we write this equation in spectral form in order to

reduce it to an ordinary differential equation by use of the
following three-dimensional Fourier transforms.
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Equation (14) is obtained by interchanging the subscripts i
and j and then the pointspand p ' .

Substituting of equation (12) to (14) in to equation (11) leads
to the spectral equation

<lg't 2 ik [2((1),(1/41'} (-K)+ oy, (}2»]
:—V|:(i+i)k2<l//ir;(|2)>:|' (15)

The tensor equation (15) becomes a scalar equation by con-
traction of the indices iand j

a<%i(*<>>+n<k[z<¢kwif'(—»2)>+<¢a/fkr{ 02»]
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M r

Three-point Correlation and Spectral Equations

Similar Procedure can be used to find the three-point corre-
lation equation. For this purpose, considering three

A A
points p, P’ p” separated by the vectors I andr’ we
take the momentum equation of MHD turbulence at the

point P, the induction equation at the point P’ and the
energy equation at P” as
4 a4 hfh W =26, QU , —-@7)
a ta T
o Lo Lo v 9
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ot oX, X, P X, X,
and
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where

2
W(X t)—;+ (h2>+ { ,total MHD  pressure

A
inclusive of potential and centrifugal force P(X,t),
hydrodynamic pressure; €2m, constant angular velocity

components; € alternating tensor.

mki ?
Multiplying equation (17) by h,'TJ”, (18) by u.T.” and

(19) by U, h,, adding and taking ensemble average, one
obtains
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into equation (20)
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In order to write the equation (10) to spectral form, we can
define the following six dimensional Fourier transforms:

WOTIED = | [@BI0e7K Y exp

—oo—oc0

[?(l? K. r’)]d kdk* (22)

WU OTIED = | [(06,B)8](K)exp

—oo—o0

[?(Q r+k. r’)]d kdk 23)

NN TN = [ [<BBBIRIOTK Y exp

—oo—oc0

[?(12 K. r’)]d kdk’ (24)

WU TN = [ (06, (0BI067 K exp

—oo—00

[?(12 r+k. r’)]d kdk' (25)
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Interchanging the points p” and p” along
with the subscripts iand j,
Uuh T =(uuhT) .
By use this fact we can write equation (21) in the form
o BO’
Gk +v[(1+ i)k2 +(1+ i)k’2 + 2k, ki -

at pM r
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The tensor equation (28) can be converted to scalar equation
by contraction of the indices i and |

<a<¢ ﬂﬁ.,} |:(1+ )k k2 + 1+ i)k’z :
ot Pu P
+ 2k k, +2—m—m € ma 2 n K. B8
= i(kk + kl:)<¢i¢k ﬁi,eis - i(kk + k;)
(BiB.B6) —i(k, +k X0, B8
ik (901500 +i(k, + KB . e 9)

If the derivative with respect to x; is taken of the momentum
equation (17) for the point p, the equation multiplied through
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by h; T;” and taken time average, the resulting equation
2 ’
_8 (wh{ T/) _ 02
0X;0X,; 0X,0X,
(uu T —(hhhT?)

A A
Writing this equation in terms of the independent variables 1 and r’

Y 2 2
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Now taking the Fourier transforms of equation (31), we get

—<7ﬁi,9,{’> =

(ki + ik, +kky + Kk o0, B07 —(B.B.BE))
kK, +2k’k, +kk’

Equation (32) can be used t o eliminate (y3,8]) from equation (28).

Solution for times before the final period

It is known that equation for final period of decay is obtained
by considering the two-point correlations after neglecting
the 3rd order correlation terms. To study the decay for times
before the final period, the three point correlations are con-
sidered and the quadruple correlation terms are neglected
because the quadruple correlation terms decays faster than
the lower-order correlation terms. Equation (32) shows that
term (yB,0]) associated with the pressure fluctuations

should also be neglected. Thus neglecting all the terms on
the right hand side of equation (29)

a<¢|ﬁ|0|»> i)kIZ +2kkk1:

r

[(1+ —)k*+(1+
Pwm

26 :|<¢Iﬁlel,> 0

Integrating the equation (33) between t, and t with inner
multiplication by k, and gives
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where 0 is the angle between K and k”and (¢, 6., is
the value of (@,3/6)) att=t,.

Now by letting r” = 0 in equation (22) and comparing with
equations (13) and (14), we get

T = 0,804,

@it (k) = [0, B(-K)O/(-K)d k.
Substituting equation (34) to (36) in equation (16)
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ot Pv Py
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Now, d K can be expressed in terms of k’and 6 as
— 27k "*d (cos0)dk’ (cf. Deissler *,
Henc d k" = =27k "*d (cos8)d k.

Putting equation (38) in equation (37) yields
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[flexp{—v(t —t, J(1+ pi)k2 +(1+ i)k’2 +

2Kk’ cos 6 + 2 Sk m]Hd(cosO)d?(’

In order to find the solution completely and following
Loeffler and Deissler (1961) we assume that

kkP@ﬂ@6+2«mﬁK—EWK—ﬁvﬂ _

(k k 74 k 4 k ’2

(27r )?
where B, is a constant depending on the initial conditions.
Substituting equation (40) into equation (39) and completing

the integration with respect to cosé, one obtains

2y ] (k)>) (
ot Py

ﬂ 75 73
=) t)j(k k'S —k°k

o Lk @ryakn =

ER

r

[exp{—v(t —t, ) [+ pi)k2 +(1+

2€mi 2y ]} —exp{—v(t—to)[(1+ Lok ras e
v Py r
4 2Kk’ 2 Sm m]H _______ 1)
Multiplying both sides of equation (41) by k?, we get
aQ —+— Q F,
at Pv P T (42)
where, Q:2 ﬂk ’ <W|T|,(k)> v s (43)

Q is the Magnetic energy Spectrum function.

By 3,5 5,3
mj(kk —k5K3yx

and

F=—
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exp{ v (t—t)[(L+—Ik? + L)k 2 -
Pm Pr
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Integrating equation (44) with respect to k' , we have
5/2
F=-— — ﬁo\/;Pr — p[ 2 Zmki 2%m € mki m (t t ):|><
2v (t_to)(1+ pr)
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15p,k* ) =T 1 U S
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3
P p 8
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The series of equation (45) contains only even powers of k
and start with k* and the equation represents the transfer
function arising owing to consideration of magnetic field at
three points at a time.

Itis interesting to note that if we integrate equation (44) over
all wave numbers, we find that

Tde:O

which is indicating that the expression for F satisfies the con-
dition of continuity and homogeneity.

The linear equation (42) can be solved to give
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Q- exp[—vkz(i PR —to):|j F
Pm Pr

‘ 2, 1 1
exp| vk~ (——+—)(t—tp) (dt
Pm  Pr

----- (47)
Pm Pr
2

+3(k) exp[—vkz(i Ay —to):| ,

N k* . : . .
where J(K)= —2° is a constant of integration. Substitut-

T
ing the values of F from equation (45) in to equation (47) and

integrating with respect to t, we get
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a7 % EXpIH2 € Q2 (E-1,)}]
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Pr(7pr —6)k
3/2
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3+ pr)” 2\ pr

2
43pr
B 2 1/2
3L+ pr)~(t-tp)

-2pr +3)k

[0)
where N(w) = e Jexz dx
(o]

Alt-t,)
pl’ (l+ pr) .

The function N, has been calculated numerically and
tabulated in Sarker and Islam (2001).

By setting F =0, j=1i, dK =—27k’d(cos6)dk and

and O =

Q:an2<wiwi,(K)>in equation (12), we get the

expression for temperature energy decay as

(T2) T jQ(k)dk

3.2° p?(1+ Pr+ Py )3 n=0 n1(2n +1)22"

Substituting equations (48) in to (49) and after integration, we get
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<T2> N P3/2 3/2(t t )—3/2
2 \/_ 2 (p, +py)?
B,zvt(t-t)"° ><expE2€mki Qm]

where

712 5/2

npr pM
2L+ p)A+p, + Py

)5/2 X

2
 35pp (3p7 - 2pr+3)

8pr(+pr+ pM)
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Thus the energy decay law for temperature field fluctuations
of MHD turbulence in a rotating system before the final peri-
od may be written as

3 2
8Py (BPF -2Pr +3) <

(T?y=X(t-t,)"* +exp
[_{Zemki gzm}]Y(t_to)_5

where
P3/2p3/2
~2J 7 (p, + py)

(T2 is the total "energy” (the mean square of the temperature
fluctuations) t is the time, x and t, are constants determined
by the initial conditions. The constant Y depends on both ini-
tial conditions and the fluid Prandtl number.

s andyY = ZﬁOZV_G
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Results and Discussion

In equation (51) we obtained the decay law of temperature
fluctuations in MHD turbulence before the final period in a
rotating system considering three-point correlation equation
after neglecting quadruple correlation terms. If the system is
non-rotating, then Q,,=0 the equation (50) becomes.

(T2 =X =t,) "+ Y (t—t,) " —mmr (52)
which was obtained earlier by Sarker and Rahman (1998)

In the absence of a magnetic field, magnetic Prandtl number
coincides with the Prandtl number (i.e. P, = PM) and the
system is non rotating the equation (50) becomes

TH_ Nep™ B2
2 8J2mvii(t-t,)"? vi(t-t,)°

which was obtained earlier by Loeffler and Deissler (1961).

—(53)

We conclude that due to the effect of rotation of fluid in the
flow field, the turbulent energy decays more rapidly than the
energy for non-rotating fluid. The 1st term of the right hand
side of equation (51) corresponds to the temperature energy
for two-point correlation and second term represents temper-
ature energy for three-point correlation. For large times the
last term in the equation (51) becomes negligible, leaving the
-3/2power decay law for the final period. If we considering
the higher order correlation terms in the analysis, it appears
that more terms in higher power of time would be added to
the equation (51).
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