Indanylation of o-Cresol with Indene

Manoranjan Saha*, Prashanta Chakravarty, Dipti Saha, Sadia Afrin Khan and M. Tafsir Uddin Bhuyan

Introduction

To protect synthetic fuels, lubricating oils and polymeric materials against thermal degradation due to heat, light, air, oxygen, ozone etc., use of antioxidant has become increasingly important. Alkylphenols and their derivatives are excellent antioxidants and multifunctional stabilizers in fuels, lubricating oils and polymeric materials (Babakhanov et al. 1968; Lebedev, 1984; Ravikovich, 1964). Moreover, derivatives of alkylphenols are also strong herbicides and bactericides (Melinikov et al. 1954; Nemetkin et al. 1951). Alkylated cresols with long alkyl group are intermediates for surfactants and detergents (Dritriev et al. 1961). Isomeric cresols have been alkylated by olefins in the presence of several different acidic catalysts (Babakhanov et al. 1965; Egidis et al. 1966; Gusev et al. 1969; Kharchenko and Zavgorodnii, 1964; Kharchenko and Zavgorodnii, 1964; Kharchenko and Zavgorodnii, 1964; Isagulayants and Belov, 1964; Saha and Ghosh, 1989; Saha et al. 1994; Saha et al. 1996; Saha et al. 1997; Saha et al. 1998; Saha et al. 2000; Saha et al. 2000; Shulov et al. 1969; Starkov et al. 1972; Vdovtsova and Fedorova, 1972; Viktorova et al. 1960; Yadav and Pala, 2000; Zavgorodnii and Kharchenko, 1963; Saha et al. 2003; Karim et al. 2005; Karim et al. 2007; Saha et al. 2008). Reports are also available on the reaction of cresols with indene (Saha et al. 2006; Palma et al. 2007). But no attempt has so far been made to study the reaction of o-cresol with indene in the presence of p-toluene sulphonphonic acid.

In the present work, reaction of o-cresol has been investigated with indene in the presence of p-toluene sulphonphonic acid.

Materials and Methods

The reactions were carried out in a three necked round bottomed flask fitted with a condenser, a thermometer, a dropping funnel and a stirrer. o-Cresol and catalyst were charged into the flask, heated to the temperature of the experiment, then indene was introduced into the mixture gradually over a certain period of time (time of addition) with constant stirring. The reaction mixture was stirred for another period of time (time of stirring) at the same temperature after the addition of the total amount of indene. The reaction mass was then cooled to room temperature, dissolved in diethylether or benzene and neutralized. The reaction mixture was then washed with distilled water several times and unreacted reactants and solvent were distilled off at atmospheric pressure. The product thus obtained was distilled and characterized by spectral analyses.

Results and Discussion

Reaction of o-cresol with indene was investigated in the presence of p-toluene sulphonphonic acid over the temperature range of 70 to 130°C. Molar ratio of o-cresol to indene was varied from 4:1 to 12:1, amount of p-toluene sulphonphonic acid was varied from 1 to 8% by wt. of o-cresol and time of reaction from 1 to 4h. o-Cresol with indene under the conditions studied gave indanyl o-cresol. The yield of the product increased from 59.0 to 64.7% with the increase in temperature from 70 to 130°C (Fig 1). The yield of the product depended also significantly on the molar ratio of o-cresol to indene (Fig 2). The yield increased from 52.1 to 80.9%, when the molar ratio of o-cresol to indene was varied from

Abstract

Indanyl o-cresol has been obtained in high yield by the reaction of o-cresol with indene in the presence of p-toluene sulphonphonic acid as catalyst. The effects of variation of temperature, molar ratio of o-cresol to indene, time of reaction and amount of the catalyst have been investigated on the reaction. The yield of the product increased with the increase of each of the above mentioned parameters. Optimum conditions of the reaction for the production of indanyl o-cresol were temperature, 130°C; molar ratio of o-cresol to indene, 12:1; amount of catalyst, 8% by wt. of o-cresol; time of addition, 2h and time of stirring, 1h.

Key words: o- Cresol, Indene, p- Toluene sulphonphonic acid, Indanyl o-Cresol, Spectral analyses

* Corresponding author: E-mail: manoranjansaha2005@yahoo.com
The yield of the product depended also on the amount of catalyst (Fig 3). Thus the yield increased from 78.5 to 80.9%, when the amount of catalyst was increased from 1 to 8% by wt. of o-cresol.

The effect of the variation of temperature on the reaction of o-cresol with indene in the presence of p-toluene-sulphonic acid (molar ratio of o-cresol to indene = 8:1, time of addition = 2h, time of stirring = 1h, amount of catalyst = 8% by wt. of o-cresol).

The effect of the variation of the amount of p-toluene-sulphonic acid on the reaction of o-cresol with indene (temperature = 130 °C, molar ratio of o-cresol to indene = 12:1, time of addition = 2h, time of stirring = 1h).

In the IR-spectrum, absorption bands at 710-750 cm\(^{-1}\) accounted for 1,2,3- trisubstituted aromatic ring, while bands near 800-900 cm\(^{-1}\) indicated the presence of 1,2,4-trisubstituted aromatic ring. Band at 3400 cm\(^{-1}\) accounted for the -OH group, while bands at 2910 cm\(^{-1}\) and 1590 cm\(^{-1}\) showed the C-H stretch and C - C stretch, respectively.

Chemical shifts of the protons are shown in Table I

<table>
<thead>
<tr>
<th>Observed signals of the protons</th>
<th>Chemical shift in the δ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic ring protons</td>
<td>6.91-7.59</td>
</tr>
<tr>
<td>-OH group proton</td>
<td>6.89</td>
</tr>
<tr>
<td>All the protons on the indanyl group except four on the aromatic ring</td>
<td>3.1-3.56</td>
</tr>
<tr>
<td>Three protons on the -CH(_3) group</td>
<td>2.3</td>
</tr>
</tbody>
</table>
The UV-spectrum of the product showed strong absorption at $\lambda_{\text{max}} = 298.5$ nm in 0.01M methanol solution.

The product had b.p. 290°C, $n_D^{20} 1.5471$, $d_4^{20} 1.042$.

Conclusion

The influence of variation of different parameters was investigated on the reaction of o-cresol with indene in the presence of p-toluenesulphonic acid as catalyst. The yield of indanyl o-cresol was found to increase with the increase in temperature, molar ratio of o-cresol to indene, time of reaction and amount of catalyst. The optimum yield of the product was 80.9% obtained under the following conditions: temperature, 130°C; molar ratio of o-cresol to indene, 12:1; amount of catalyst, 8% by wt. of o-cresol; time of addition, 2h; time of stirring, 1h.

References

