Synthesis of potential pharmaceutically active dihydropyrimidine-2-oxo and their 2-thio analogues

M. E. Halim1*, K. Akhter1, M. Hasan1, M. M. Rahman2, U. K. R. Romman1 and M. G. Ahmed1

1Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
2Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh

Abstract

The Biginelli one - pot three-component cyclocondensation was applied to prepare 3, 4 - dihydropyrimidin - 2 (1H) – ones from aldehydes, β-dicarbonyl compounds and urea (or thiourea) using ZnCl₂ as a catalyst. The method offers several advantages including short reaction times and easy experimental work up procedures.

Keywords: Cyclocondensation; Aldehydes; β - dicarbonyl; Urea and thiourea

Introduction

Multicomponent reactions have drawn significant attention from the pharmaceutical point of view (Clark and Maconachie 1996). The Biginelli reaction is a three component chemical reaction used to synthesize 3, 4-dihydropyrimidin-2 (1H)-ones from an ester, an aryl aldehyde, and urea catalyzed by Bronsted and/or Lewis acids (Hu et al., 1998; Kappe and Stadler, 2004). 3, 4-dihydropyrimidin-2 (1H)-ones used as calcium channel modulators and antihypertensive α₁a antagonists (Atwal et al., 1991, Rovnyak et al., 1992). For novel Biginelli-like scaffold syntheses, the use of common open chain β-dicarbonyl compounds has been extended to cyclic β-diketones, β-ketolactones, cyclic β-diesters or β-amides, benzo cyclic ketones, and α-keto acids (Byk et al., 2000; Kappe, 2000; Abelman et al., 2003; Yarim et al., 2003; Shaabani et al., 2004). As these reactions suffer from some limitations, efforts are continuing to minimize the limitations. In order to improve the efficiency of Biginelli reaction, many Lewis acids such as Yb(OTf)₃ (Ma et al., 2000), InCl₃ (Brindban and Jana, 2000), VCl₃ (Salitha et al., 2003), CuCl₂·2H₂O (Gohain et al., 2004), LiBr (Maiti et al., 2003), RuCl₃ (Suryak and Gibbs, 2005), SnCl₂·2H₂O (Russowsky et al., 2004), BF₃·OEt₂ (Hu et al., 1998), ZrCl₄ (Rodriguez-Dominguez et al., 2007), Y(NO₃)₃·6H₂O (Nandurkar et al., 2007), Cu (OTf)₂ (Paraskar et al., 2003), CuI (Kalita and Phukan, 2007), In Br₃ (Fu et al., 2002), B (OH)₃ (Tu et al., 2003), In (OTf)₃ (Ghosh et al., 2004), PhB (OH)₂ (Debach et al., 2006), Fe (OAc)₃, Fe(OTf)₃ (Adibi et al., 2007), HBF₄ (Chen et al., 2007) and Bronsted acids such as p-toluenesulfonic acid (Jin et al., 2002), silica sulfuric acid (Salehi et al., 2003), potassium hydrogen sulphate (Tu et al., 2004), formic acid (Jiang and Qi, 2007), chloroacetic acid (Yu et al., 2007) have been developed as catalysts. Heteropolyacids such as 12-molybdophosphoric acid H₃PMo₁₂O₄₀ (Heravi et al., 2006) and 11-molybdo -1-vanadophosphoric acid H₃PMo₁₄VO₄₀ (Maradur and Gokavi, 2007), also have been used as catalyst. Even bakers’ yeast has been used as efficient catalyst in Biginelli reaction (Kumar and Maurya, 2007). In addition, significant improvements in the reaction rate and yield for the reaction carried out under microwave condition have been reported (Gohain et al., 2004). Moreover, asymmetric syntheses of dihydropyrimidinones using CeCl₃ or In Cl₃ or Yb(OTf)₃ as catalysts in presence of chiral ligands have been reported (Munoz-Muniz and Juaristi, 2003; Huang et al., 2005). Some of these reactions are really interesting from a synthetic chemist’s point of view. Despite their tremendous success, however, some drawbacks still remain including catalysts are expensive, complex or unavailable.

*Corresponding author e-mail: ershadhalim@yahoo.com
Heterocyclic moiety is a vital structure in many bioactive natural products therapeutic compounds. Multicomponent reactions are becoming increasingly prevalent due to their improved efficiency, simple procedure, one-pot character, quantitative yields, and high number of accessible backbones. Oliver Lecnik and his co-workers reported the separation of pharmacologically active dihydropyrimidinones using carboxymethyl-β-cyclodextrin as chiral selector by capillary electrophoresis (Lecnik et al., 2001). Derivatives of 3,4-dihydropyrimidin-2 (1H)-ones show a diverse range of therapeutic properties and pharmacological activities such as antimitomic, analgesic, antiviral, anticancer, anti-inflammatory, and antihypertensive agents (Kappe, 1993; 2000). However, in spite of their potential utility, many of these methods generally require strong acidic conditions, stoichiometric amount of the catalysts, expensive reagents, prolonged reaction times and high temperatures. Thus, to avoid these limitations, we describe in this report an efficient and rapid method for the preparation of 3, 4-dihydropyrimidin-2 (1H)-ones using a new catalytic agent ZnCl₂ in refluxed n-heptane-toluene.

Experimental

Reagent grade chemicals were purchased from commercial sources and used as received. Ultraviolet-visible spectra of were recorded on a SHIMADZU-UV-160A ultraviolet spectrometer with a scanning range of 800-200 nm. IR spectra were recorded as KBr pellets using a SHIMADZU-IR-470 infrared spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a JEOL 400 MHz NMR spectrophotometer. Mass spectra were obtained with a JEOL JMS-HX-110A spectrophotometer.

General procedure for the synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones (4a-4f)

A mixture of 4-methoxybenzaldehyde/4-methylbenzaldehyde (10 mmol), acetylacetone/ ethylacetoacetate (10 mmol), urea/thiourea (15 mmol), and ZnCl₂ (2 mmol) was refluxed in n-heptane-toluene (30 mL, 1:1) medium until the consumption of all the starting material (monitored by analytical TLC). Upon completion of the reaction, the solid was filtered and successively washed with H₂O. The crude product was then purified by recrystallization from appropriate solvent system.

5-Acetyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4a)

Yield 15.9%; mp 181-183 °C; UV-Visible (λ_{max}): 295.0 nm; IR (KBr): 3350, 3110, 2900, 1700, 1680, 1618, 1252 cm⁻¹; ¹H NMR (DMSO-d₆): δ 9.15 (s, 1H), 7.77 (s, 1H), 7.15 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 5.20 (s, 1H), 3.70 (s, 3H), 2.27 (s, 3H), 2.07 (s, 3H); ¹³C NMR: δ 196.5, 158.7, 150.3, 145.0, 135.5, 128.0, 114.1, 106.8, 55.9, 47.7, 27.0, 15.0; EI-MS m/z (%): 261 (M⁺ + 1, 100), 260 (M⁺, 44), 259 (40), 245 (14), 218 (18), 153 (62), 136 (24); Anal. Calcd for C₁₅H₁₈N₂O₄: C, 62.06; H, 6.25; N, 9.65. Found: C, 60.63; H, 6.18; N, 10.80.

5-Acetyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (4b)

Yield 5.8%; mp 170-172 °C; UV-Visible (λ_{max}): 322.0 nm; IR (KBr): 3360, 3060, 2810, 1705, 1670, 1447, 1020 cm⁻¹; ¹H NMR (DMSO-d₆): δ 10.25 (s, 1H), 9.70 (s, 1H), 7.15 (d, J = 10.0 Hz, 2H), 6.90 (d, J = 10.0 Hz, 2H), 5.25 (s, 1H), 3.74 (s, 3H), 2.32 (s, 3H), 2.12 (s, 3H); ¹³C NMR: δ 196.5, 174.5, 158.7, 158.0, 135.5, 128.0, 114.1, 104.6, 55.9, 52.8, 27.0, 15.7; EI-MS m/z (%): 277 (M⁺ + 1, 100), 276 (M⁺, 24), 261 (12), 233 (9), 218 (20), 154 (36), 136 (26); Anal. Calcd for C₁₄H₁₆N₂O₂S: C, 60.85; H, 5.84; N, 10.14. Found: C, 61.17; H, 5.88; N, 10.17.

5-Ethoxycarbonyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4c)

Yield 24.8%; mp 192-194 °C; UV-Visible (λ_{max}): 286.0 nm; IR (KBr): 3200, 3060, 2940, 1727, 1685, 1600, 1485, 1210, 760 cm⁻¹; ¹H NMR (DMSO-d₆): δ 9.16 (s, 1H), 7.68 (s, 1H), 7.15 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.10 (s, 1H), 3.98 (q, J = 7.0 Hz, 2H), 3.71 (s, 3H), 2.32 (s, 3H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C NMR: δ 167.2, 158.7, 150.3, 147.3, 135.5, 128.0, 114.1, 106.4, 61.7, 55.9, 49.5, 14.9, 14.2; EI-MS m/z (%): 291 (M⁺ + 1, 100), 290 (M⁺, 20), 289 (22), 261 (27), 245 (9), 217 (13), 183 (2), 154 (53), 136 (42); Anal. Calcd for C₁₄H₁₆N₂O₃: C, 62.06; H, 6.25; N, 9.65. Found: C, 60.63; H, 6.14; N, 10.12.

5-Ethoxycarbonyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (4d)

Yield 22.3%; mp 145-147 °C; UV-Visible (λ_{max}): 305.0 nm; IR (KBr): 3300, 3080, 2940, 1717, 1680, 1438, 1180, 760 cm⁻¹; ¹H NMR (DMSO-d₆): δ 7.52 (s, 1H), 7.21 (d, J = 11.0 Hz, 2H), 6.98 (s, 1H), 6.86 (d, J = 11.0 Hz, 2H), 5.36 (s, 1H), 4.10 (q, J = 6.0 Hz, 2H), 3.80 (s, 3H), 2.36 (s, 3H), 1.19 (t, J = 6.0 Hz, 3H); ¹³C NMR: δ 174.5, 167.2, 160.3, 158.7, 135.5,
infrared spectrophotometer. 1H and 13C NMR spectra scanning range of 800-200 nm. IR spectra were commercial sources and used as received. Reagent grade chemicals were purchased from refluxed mmol), urea/thiourea (15 mmole), and ZnCl2 (2 mmol) was A mixture of 4-methoxybenzaldehyde/4-methylb

JEOL JMS-HX-110A spectrophotometer.

capillary electrophoresis (Lecnik carboxymethyl-β-cyclodextrin as chiral selector by his co-workers reported the separation of Multicomponent reactions are becoming increasingly bioactive natural products therapeutic compounds.

Yield 15.9%; mp 181-183 °C; UV-Visible (λmax): 305.0 nm; 1H NMR (DMSO-d6): δ 9.16 (s, 1H), 7.68 (s, 1H), 6.88 (d, J = 8.8 Hz, 2H), 4.08 (q, J = 7.0 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H) 1.18

C NMR: δ 196.5, 174.5, 128.0, 114.1, 106.4, 61.7, 55.9, 49.5, 14.9, 14.2; EI-MS m/z 15.0; EI-MS %: 261 (M+ + 1, 100), 260 (M +, 44), 259

Yield 5.8%; mp 170-172 °C; UV-Visible (λmax): 288.0 nm; 1H NMR (DMSO-d6): δ 10.32 (s, 1H), 9.62 (s, 1H), 7.15 (d, J = 7.0 Hz, 2H), 5.12 (s, 1H), 4.08 (q, J = 7.0 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H) 1.18

C NMR: δ 196.5, 174.5, 128.0, 114.1, 106.4, 61.7, 55.9, 49.5, 14.9, 14.2; EI-MS m/z 15.0; EI-MS %: 261 (M+ + 1, 100), 260 (M +, 44), 259

Yield 10.3%; mp 178-181 °C. UV-Visible (λmax): 301.0 nm; 1H NMR (DMSO-d6): δ 10.32 (s, 1H), 9.62 (s, 1H), 7.15 (d, J = 7.0 Hz, 2H), 7.10 (d, J = 7.0 Hz, 2H), 5.12 (s, 1H), 4.00 (q, J = 5.0 Hz, 2H), 2.50 (s, 3H), 2.27 (s, 3H) 1.10

(t, J = 5.0 Hz, 3H); 13C NMR: δ 174.5, 167.2, 160.3, 140.2, 136.4, 128.9, 126.9, 104.2, 61.7, 54.5, 15.6, 14.2; EI-MS m/z (%): 291 (M+ + 1, 100), 290 (M+, 12), 261 (7), 245 (5), 154 (11), 136 (9); Anal. Caled for C14H16N2O2S: C, 60.85; H, 5.84; N, 10.14. Found: C, 61.17; H, 6.22; N, 9.74.

Results and discussion

The one pot synthesis of 3, 4 - dihydropyrimidin-2 (1H) - ones and – thiones was achieved by the three-component condensation of aldehydes, β - dicarboxyl compounds and urea (or thiourea) in the presence of anhydrous zinc chloride. On heating, a yellow solid precipitate was appeared when approximately 5 mg of crystalline solid product was dissolved in CHCl3 and 2, 4 - dinitrophenylhydrazine was added to it drop wise. This indicates that the compounds contain a keto (>C=O) group. The UV spectra of the compounds displayed characteristic absorption bands ranges from 280 to 290 nm for n→π* transition of >C=O group or very close to 280 to 290 nm due to the bathochromic shift of a conjugated double bond.
The IR spectra of compounds 4a and 4b showed peaks due to C=O groups close to the lower frequency of keto (>C=O) group, indicating the conjugation of keto group to a >C=C< double bond. On the other hand, compounds 4c, 4d, 4e, and 4f exhibited peaks of C=O of ester groups close to the lower frequency value of ester (C=O) group indicating the conjugation of carbonyl group to a >C=C< double bond.

In the 1H NMR spectra, three 3H singlets for compounds 4a and 4b and two 3H singlets for compounds 4c, 4d, 4e, and 4f represent three and two distinct CH3- groups, respectively. Of these, the resonances due to the CH3-O- of 4a, 4b, 4c, and 4d are most deshielded and the allylic hydrogens are less deshielded. On the contrary, allylic hydrogens of 4e and 4f are most deshielded and CH3- attached to the aromatic ring is less deshielded. There are also two resonances for the N-H protons of the amide groups. The N-H conjugated with a C=O bond has a large δ value compared to the other.

In the 13C NMR spectra, the signals at approximately 114 and 128 ppm were very intense due to the presence of aromatic double bond. Signal appears at approximately 196 ppm for the keto group and at 167 ppm due to the presence of C=O of ester group. Based on these results, the most probable structures of the compounds are depicted in Scheme 1 and Table I.

References

Abelman MM, Smith SC and James DR (2003), Cyclic ketones and substituted α-keto acids as alternative substrates for novel Biginelli-like scaffold synthesis, Tetrahedron Lett. 44: 4559-4562. DOI: org/ 10.1016/S0040-4039(03)00985-7

Adibi H, Samimi KA and Beygzaede M (2007), Iron (III) trifluoroacetate and trifluoromethanesulfonylate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols, Catal. Commun. 8: 2119-2124.

Atwal KS, Swason BN, Unger SE, Floyd DM, Moreland S, Hedberg A and O’Reilly BC (1991), Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents, J. Med. Chem. 34: 806-811.

Hu EH, Sidler DR and Dolling U-H (1998), Unprecedented catalytic three component one-pot condensation

Ultraviolet-visible spectra of were recorded on a refluxed dihydropyrimidin-2-(1H)-ones (4a-4f) appropriate solvent system. Capillary electrophoresis (Lecnik carboxymethyl-β-cyclodextrin as chiral selector by pharmacologically active dihydropyrimidones using Heterocyclic moiety is a vital structure in many analytical TLC). Upon completion of the reaction, the solid refluxed in for the preparation of 3, 4-dihydropyrimidin-2(1H)-ones using a new catalytic agent ZnCl₂ in temperatures. Thus, to avoid these limitations, we pharmacological activities such as antimitomic, 5-Acetyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidine (4e) max): 286.0 nm; Yield 39.4%, mp 205-207 °C; UV-Visible (%): 277 (M+ + 1, 100), 276 (M +, 24), 261 (40), 245 (14), 218 (18), 153 (62), 136 (24); Anal. Calcd for C₁₄H₁₆N₂O₂S: C, 60.85; H, 5.84; N, 10.12. Found: C, 61.17; H, 5.92; N, 9.14. Found: C, 58.24; H, 5.89; N, 9.12. In the 13C NMR spectra, the signals at approximately 114 1-116.806-811. J. Med. Chem. 65: 4559-4562. DOI: org/10.1016/S0040-4039(03)00985-7

Suryak D and Gibbs AR (2005), Ruthenium (III) Chloride-Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones under Solvent-Free Conditions Synthesis 11: 1748-1750.