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Abstract 

Using Deissler’s approach the decay of temperature fluctuations in homogeneous 
turbulence before the final period for the case of multi-point and multi-time in a 
rotating system in presence of dust particle is studied and have considered 
correlation between fluctuating quantities at two and three point. Two and three 
point correlation equations in a rotating system is obtained and the set of equations is 
made to determinate by neglecting the quadruple correlations in comparison to the 
second and third order correlations. The correlations are converted to spectral form 
by taking their Fourier transforms. Finally integrating the energy spectrum over all 
wave numbers, the energy decay law of temperature fluctuations in homogeneous 
turbulent before the final period for the case of multi-point and multi-time in a 
rotating system is obtained.   

 
Introduction 

Deissler1,2 developed a theory for homo-
geneous turbulence which was valid for 
times before the final period. Following 
Deissler’s theory Loeffler and Deissler3 
studied the decay of temperature fluctuations 
in homogeneous turbulence before the final 
period. In their study, they presented the 
theory which is valid during the period for 
which the quadruple correlation terms are 
neglected compared to the 2nd and 3rd – 
order correlation terms. Using Deissler’s 
same theory Kumar and Patel4 studied the 
first-order reactions in homogeneous 
turbulence before the final period for the 
case of multi-point and single-time. The 
problem4 is extended to the case of multi-
point and multi-time concentration correlation 
by Kumar and Patel5 and also the numerical 
result of5 carried out by Patel.6  Following 

 
 
Deissler’s approach Sarker and Islam studied 
the decay of MHD turbulence before the 
final period for the case of multi-point and 
multi-time.7 M. A. Islam and M. S. A. 
Sarker8 also studied the first-order reactant 
in MHD turbulence before the final period of 
decay for the case of multi-point and multi-
time. Sarker and L. Rahman9 studied the 
decay of temperature fluctuations in MHD 
turbulence before the final period. Sarker 
and Islam10 also studied the decay of 
temperature fluctuations in homogeneous 
turbulence before the final period for the 
case of multi-point and multi-time. Azad and 
Sarker11 studied the decay of MHD 
turbulence before the final period for the 
case of multi-point and multi-time in 
presence of dust particle. 
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M. A. K. Azad and S. A. Sarker12 also 
studied the decay of dusty fluid MHD 
turbulence before the final period in a 
rotating system for the case of multi-point 
and multi-time. S. Sultana and S. A. Sarker13 
discussed the Decay of homogeneous dusty 
fluid turbulence before the final period. 
Further work along this same line has more 
recently been done    by M. A. K. Azad and  
M. S. Alam Sarker.14,15 

In their approach, they considered two and 
three point correlations and neglecting 
fourth- and higher-order correlation terms 
compared to the second-and third-order 
correlation terms. 

In this paper the Deisslers1,2 method is used 
and we have studied the decay of 
temperature fluctuations in homogeneous 
turbulence before the final period for the 
case of multi-point and multi-time in a 
rotating system.  

Correlation and spectral equations 

For an incompressible fluid with constant 
properties and for negligible frictional 
heating, the energy equation may be written 
as 
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where T~  and iu~  are instantaneous values of 
temperature and velocity; k, thermal 
conductivity; ρ, fluid density; Cp heat 
capacity at constant pressure; xi, space co-
ordinate; t, time and the repeated subscripts 
are summed from 1 to 3. 

Breaking these instantaneous values into 
time average and fluctuating components as  

TTT +=~
  and iii uuu +=~    

where T, temperature fluctuation from time 
average ; T , time average value of 

temperature; ui , velocity fluctuation from 
time average; iu ,  time average value of 

velocity. 

From the condition of homogeneity it 

follows that 0=
∂

∂

ix
T

, and in addition the 

usual assumption is made that T  is 

independent of time and that iu  = 0. Thus 
equation (1) becomes 
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where γν /=rp  , Prandtl number;  ν, 

kinematic viscosity and  γ = 
pC

k
ρ

. 

Equation (2) is assumed to hold at the 
arbitrary point p. For the point p′ the 
corresponding equation can be written 
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The points p and p′ are separated by the 
vector r̂  is shown below 

           r̂  
p   ⎯→⎯⎯ p′ 
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Multiplying equation (2) by T ′ , equation (3) 
by T and taking ensemble average, result in 
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with the continuity equation, 
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The angular bracket has been used to denote 
an ensemble average.  

Using the transformations 
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into equation (4) and (5), one obtains 
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It is convenient to write this equation in 
spectral form by use of the following three- 
dimensional Fourier transforms as follows.16 
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It is more obvious by interchanging the point 
p and p′ that  
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where K̂  is known as a wave number vector 
and magnitude of  K̂  has the dimension 
1/length and can be considered to be the 
reciprocal of an eddy size. 

Substitution of equations (9)-(11) into 
equations (7) and (8) leads to the spectral 
equations. 
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In equations (12)--(13) the quantity 
)ˆ(Kττ ′ may be interpreted as a temperature 

fluctuation “energy” contribution of thermal 
eddies of size 1/k. The time derivative of this 
“energy’ as a function of the convective 
transfer to the wave numbers and the 
“dissipation” due to the action of the thermal 
conductivity. The term on the right hand side 
of equation (12) is also called transfer term 
while the 2nd term on the left hand side is the 
“dissipation” term.             

Three-point, Three-time correlation and 
spectral equations 

Considering three points p, p′, p′′ separated  
by the vectors r̂ and r ′ˆ , we write the 
Naviour  Stocke's equation for turbulent flow 
of incompressible fluid in a rotating system 
at the point p, energy equations at the points 
p′ and p′′.                                                                                  
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Multiplying equations (14) – (16) by TT ′′′ , 
Tu j ′′  and  Tu j ′ respectively and then taking 

ensemble average, we obtained 
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Using the six-dimensional Fourier 
transforms of the type 
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If the derivative with respect to xj is taken of 
the momentum equation (14) for the point p, 
the equation multiplied by TT ′′′ and taken 
the ensemble average, the resulting equation 
is  
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Writing this equation in terms of the 
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Taking the Fourier transforms of equation 
(31)  
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Equation (32) can be used to eliminate 
θθα ′′′  from equation (27). 

Solution for times before the final period   

To obtain the equation for times before the 
final period of decay, the three point 
correlations are considered and the 
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quadruple correlation terms decays faster 
than the lower-order correlation terms. If this 
assumption is made the equation (32) shows 
that the term θθα ′′′ associated with the 

pressure fluctuations should also be 
neglected. Thus neglecting all the terms on 
the right hand side of equations (27)-(29).  
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Inner multiplication of equations (33), (34) 
and (35) by kj and integrating between to and 
t we obtain 

{

( )( ) ( ) }0mmij
r

r
22

r ttΩ
ν

2pcosθkk2pkkp1

exp

−⎥⎦
⎤

⎢⎣
⎡ ∈+′+′++

−=〉′′′〈
r

jjj p
fk νθθβ

                                                      -------- (36) 

(37) ---             exp 2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆−=〉′′′〈 tk

p
gk

r
jjj

νθθβ

and  

(38) ------   exp 2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∆′−=〉′′′〈 tk

p
qk

r
jjj

νθθβ                                                         

For these relations to be consistent, we have 
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k ′ and θ  as ( ) kddk ′′− ˆcos2 2 θπ  (cf. 
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depends on the initial conditions of the 
turbulence. 

In order to find the solution completely and 
following Loeffler and Deissler3 we assume 
that 
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where δ0 is a constant depending on the 
initial condition. The negative sign is placed 
in front of δ0 in order to make the transfer of 
energy from small to large wave numbers for 
positive value of δ0.  

Substituting equation (43) into equation (42), 
we get  
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Multiplying both side of equation (44) by k2, 
we get 
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where ττπ ′= 22 kE , the energy spectrum 

function and w is given by  
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Integrating equation (44) with respect to θ, 
we have 
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Again integrating equation (47) with respect 
to k ′ , we have  
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The series of equation  (46) contains only 
even power of k and start with k4. 

If we integrate equation  (48) for ∆t=0 over 
all wave numbers, we find that 
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∞

=
0

0wdk                  ------------ (49) 

which is indicating that the expression for w 
satisfies the condition of continuity and 
homogeneity. Physically it was to be 
expected as w is a measure of the energy 
transfer and the total energy transferred to all 
wave numbers must be zero. 

The linear equation (45) can be solved to 
give  
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integration. 

Substituting the values of w from (48) and 
J(k) into the equation (50) and integrating 
with respect to t0 we get  
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where   ∫=
η
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By setting 0ˆ =r  in equation (9) and use is 
made of the definition of E, the result is  
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Substituting equation (51) into equation (52) 
and integrating with respect to k, gives 
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where T = t - t0. 

Equation (53) is the decay law of 
temperature energy fluctuations in 
homogeneous turbulence before the final 
period for the case of multi-point and multi-
time in a rotating system. 

Results and Discussion  

In equation (53) we obtained the decay law 
of temperature fluctuation in homogeneous 
turbulence before the final period in a 
rotating system neglecting quadruple 
correlation terms in comparison with the 
third –order terms for the case of multi-point 
and multi-time. If the system is non rotating 
then Ωm = 0 the equation (53) becomes  
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which is obtained earlier by Sarker and 
Islam.10 

If we put 0=∆T , we can easily find out 
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which is obtained earlier by Loeffler and 
Deissler.3 

This study shows that the effect of rotation 
in homogeneous turbulence the temperature 
energy fluctuations decays more rapidly than 
the energy for non-rotating fluid for times 
before the final period.  

If higher order correlation equation are 
considered in the analysis it appears that 
more terms of higher power of time would 
be added to the equation (53). For large 
times, the second term in the equation 
becomes negligible leaving the -3/2 power 
decay law for the final period. 
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