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Abstract

Using Deissler’s approach the decay of temperature fluctuations in homogeneous
turbulence before the final period for the case of multi-point and multi-time in a
rotating system in presence of dust particle is studied and have considered
correlation between fluctuating quantities at two and three point. Two and three
point correlation equations in a rotating system is obtained and the set of equations is
made to determinate by neglecting the quadruple correlations in comparison to the
second and third order correlations. The correlations are converted to spectral form
by taking their Fourier transforms. Finally integrating the energy spectrum over all
wave numbers, the energy decay law of temperature fluctuations in homogeneous
turbulent before the final period for the case of multi-point and multi-time in a

rotating system is obtained.

Introduction

Deissler'? developed a theory for homo-
geneous turbulence which was valid for
times before the final period. Following
Deissler’s theory Loeffler and Deissler®
studied the decay of temperature fluctuations
in homogeneous turbulence before the final
period. In their study, they presented the
theory which is valid during the period for
which the quadruple correlation terms are
neglected compared to the 2nd and 3rd —
order correlation terms. Using Deissler’s
same theory Kumar and Patel* studied the
first-order reactions in  homogeneous
turbulence before the final period for the
case of multi-point and single-time. The
problem* is extended to the case of multi-
point and multi-time concentration correlation
by Kumar and Patel’ and also the numerical
result of® carried out by Patel.® Following

Deissler’s approach Sarker and Islam studied
the decay of MHD turbulence before the
final period for the case of multi-point and
multi-time.” M. A. Islam and M. S. A.
Sarker® also studied the first-order reactant
in MHD turbulence before the final period of
decay for the case of multi-point and multi-
time. Sarker and L. Rahman’ studied the
decay of temperature fluctuations in MHD
turbulence before the final period. Sarker
and Islam'® also studied the decay of
temperature fluctuations in homogeneous
turbulence before the final period for the
case of multi-point and multi-time. Azad and
Sarker!! studied the decay of MHD
turbulence before the final period for the
case of multi-point and multi-time in
presence of dust particle.
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M. A. K. Azad and S. A. Sarker'’ also
studied the decay of dusty fluid MHD
turbulence before the final period in a
rotating system for the case of multi-point
and multi-time. S. Sultana and S. A. Sarker"’
discussed the Decay of homogeneous dusty
fluid turbulence before the final period.
Further work along this same line has more
recently been done by M. A. K. Azad and
M. S. Alam Sarker.'*"

In their approach, they considered two and
three point correlations and neglecting
fourth- and higher-order correlation terms
compared to the second-and third-order
correlation terms.

In this paper the Deisslers'” method is used
and we have studied the decay of
temperature fluctuations in homogeneous
turbulence before the final period for the
case of multi-point and multi-time in a
rotating system.

Correlation and spectral equations

For an incompressible fluid with constant
properties and for negligible frictional
heating, the energy equation may be written
as

o, ok o
ot 'ox,  pC, ox0x,

where T and U, are instantaneous values of

temperature and velocity; k, thermal
conductivity; p, fluid density; C, heat
capacity at constant pressure; X;, space co-
ordinate; t, time and the repeated subscripts
are summed from 1 to 3.
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Breaking these instantaneous values into
time average and fluctuating components as

-F:<T>+T and UI :<u|>+u|

where T, temperature fluctuation from time
average <T>, time average value of
temperature; w; , velocity fluctuation from

time average; <ui>, time average value of

velocity.

From the condition of homogeneity it

o)

OX.

follows that

=0, and in addition the

usual assumption is made that <T> is

independent of time and that {ui> = 0. Thus

equation (1) becomes

oT oT 14 o°T
U =] — &)
ot OX; P, ) OX;.0X,
where P, =v/y , Prandtl number; v,

kinematic viscosity and y= ——.
p

Equation (2) is assumed to hold at the

arbitrary point p. For the point p’the
corresponding equation can be written
or’ o1’ v | oT’
' + ui P Al (3)
ot OX; p, )OX/0OX|

The points p and p’ are separated by the
vector f is shown below
".‘
p —>—p

!
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Multiplying equation (2) by T', equation (3)
by T and taking ensemble average, result in

o(TT') .\ o(TT'u;) :(Lj@

-4
o X P ) OX0X @
8<TT’>+8<'I'I"U{> (v )T s
& e e T
with the continuity equation,
ou; ou’
—4=—=0 6
OX  OX ©

The angular bracket has been used to denote
an ensemble average.

Using the transformations

o_ 9 i:i(éj
o or ox  ar \at),

0 0 0 ©

:(EL oAt oAt
into equation (4) and (5), one obtains

oTT") - ouTT) (— r—Att+ At)+

ot or,

Lot 2 !
M(f, At,t)= 2(ij """ )
o(TT') N o(uTT’) (- F,—At,t + At)

oAt o, L
(v oX(TT') - (8)
p, ) orer,
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It is convenient to write this equation in
spectral form by use of the following three-
dimensional Fourier transforms as follows.'®

(TT'(F,At,t)) = T<rf'(K,At,t)>exp[f (K.¢ )k

—00

—00

It is more obvious by interchanging the point
p and p’ that

(uTT'(F, At t)) = (u,TT (= F,—At,t + At))

_ 1<¢i (R -t t+ At)> expli (K¢ |k

where K is known as a wave number vector

and magnitude of K has the dimension
1/length and can be considered to be the
reciprocal of an eddy size.

Substitution of equations (9)-(11) into
equations (7) and (8) leads to the spectral
equations.

M + 2(%]k2<n"> =iK, [<¢JT'(K, At,t)>

ot r

(gl Roatteat) ] (12)
8<2'T'> N 2(ij2 _

OAt P,
ik (g RoAttHAt)  ----(13)
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In equations (12)«13) the

TT'(K) may be interpreted as a temperature

quantity

fluctuation “energy” contribution of thermal
eddies of size 1/k. The time derivative of this
“energy’ as a function of the convective
transfer to the wave numbers and the
“dissipation” due to the action of the thermal
conductivity. The term on the right hand side
of equation (12) is also called transfer term
while the 2™ term on the left hand side is the
“dissipation” term.

Three-point, Three-time correlation and

spectral equations

Considering three points p, p’, p'' separated
by the vectors f and f’', we write the
Naviour Stocke's equation for turbulent flow
of incompressible fluid in a rotating system
at the point p, energy equations at the points

p' and p".
f' p!
p I”\, p’
a2
au — 4 ( Jul)_ 1 ap v uj
ot 0X pax OX;OX;
i Q mU --(14)
8T’ , 0T’ _(_) 0T’ (15)
ot '8xi' P " Ox!/ox!
a " a " v aZTN
d u'’ =(— - (16
" o "B a1

i
Multiplying equations (14) — (16) by TT",
U;T" and u;T'respectively and then taking

ensemble average, we obtained
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a<ujTT”> 6<ujTT”ui>_ 1 o(PTT")

a o x|
—azgif;:”>—2 i Qu(UTT)  ----(17)
8<T’ujT”> 8<ui'T'ujT”>_ y 82<T'ujT">
a X _[ﬁj X
and 7 (18)
oTu,T) a(u;’T”uJ’}_ V)T
------- (19)

Using the transformations

o _(o,0)0_o 0 o
X, or, or/Jox or ox! or

[ﬁj _(ﬁj 00 o
Ot Jup \0t )y OAL OAL BAY

o 0 0

T oAU OAL" oAt

into equations (17)—(19), we have

M—(iJri,j@jTT”ui%
ot o, o

6<ui”r’ujT"> 6<ui’T”ujT’>
or, ! or/

1

2
L i+ 0 (PTT")+ £+£ <ujT”I'”>+
plor; 6rj’ o or
v & 8 ” ”
(PJ(@WG + 6n’6n’]<u TT )-2 Emil Qm<ujTT )-(20)

6<ujTT"> 6<ui”r’ujT”>_ Vv 62<T’ujT”>
oAt o _[FJ oror,

I r
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8<T'ujT”> 8<ui"l'"ujT'> (

B L}a%ujT’r”)

+
OAt' or/ P.) oror
———————— (22)
Using  the six-dimensional ~ Fourier
transforms of the type
(uTT") (PP AL AL, )= I I<ﬂj€'€">
exp[ f( P+ K'.f')]deK’ ----- (23)
(uu )R AL ALY = [ [(B8,00")
expli (K £+ KF JldKdK" ---(24)

(pTT")(F, P, A

At A= [(a0'0")

exp[f(K.f+ K’.f’)]deK' ----(25)

Interchanging the points p’ and p” shows

that
(ot )= (ot )= [ (5,000
expli(K.f + K" JJdKdK’

By use of these facts we can write equations
(20)-(22) in the form

ap,00')

- (1 p K+ 2prkik

(KAt A1)+

r

(1+p, K+ 2p,
1%

€y Q1 8,00")
%i(kj +k, J@00") 4k, + k)
(B5,00") - (B8,00")R. K" ALAL.E) --(27)

(KK, At AL t)=

o(p,00"\R. K" At At t)

N

(R.K".At At )= il ﬂ,ﬂJ ( LK, AL A t) -(28)
o(p,00")R. K", At At ) [ Jk

oAt
(R.K". At att)= -iki(513,00"(R K’ at, At t) -29)

If the derivative with respect to x; is taken of
the momentum equation (14) for the point p,
the equation multiplied by T'T"and taken
the ensemble average, the resulting equation
is
62<uiujTT”>
OX;0X;

2 "
_ 10 (p177) G0)
P OX;0X;

Writing this equation in terms of the
independent variables f and f’

o? o? o? o?

[ + + + ]<uiujTT"> =
oror,  oror oror;  or'or;
1.0 o 82 ,
- +2 —pTT") --31)
p Or;or; or;or; ar

Taking the Fourier transforms of equation
31)
<a979v>:
= plik; + k' -+ kik; +kik; ) 8, 8,00
kik; +2kjk} +kik}
Equation (32) can be used to eliminate
<a9’l9"> from equation (27).

--(32)

Solution for times before the final period

To obtain the equation for times before the
final period of decay, the three point
correlations are considered and the
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quadruple correlation terms decays faster
than the lower-order correlation terms. If this
assumption is made the equation (32) shows

that the term <0a9'0”> associated with the
pressure fluctuations should be

neglected. Thus neglecting all the terms on
the right hand side of equations (27)-(29).

also

HBOTNK K, AL At 2
: ( a )%|:(l+ pr)k2 +2prkiki(% emij %:|

</3jaa>(|%, R0 1)=0

AB.ONK, K, AL ALt
<ﬂ] >( >IN L, AL AL, )+(LJk2<ﬂJ6’9">
OAt p

r

K,K', At At't)=0 ----(34)
( )

r

BN K, K, At, AL, t
<ﬂl >( )+[VJk!2<ﬂj9/9u>
OAt’ p

K,K, At At',t)=0  ---(35)
( )

Inner multiplication of equations (33), (34)
and (35) by k;j and integrating between t, and
t we obtain

K (BOO)=f x| ——

r

[(1+pr)(k2 1K)+ 2p kKo + 25* e Qm:|(t_t0) }
-------- (36)
ki(8,06") = g; exp(—plsztJ ---(37)
and
kj(B;6'0") =q; exp(—plk’zAt’J ...... (38)
r

For these relations to be consistent, we have
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kJ <ﬁ19’6”> — kJ <ﬁ19’6”>0

r

exp{—;{(l +p K2+ K2t —t, )+ KAt + KA +
2p,kk' cosot —to)+&emij Q,(t-t,) )] (39)
1%

where @ is the angle between k and k' and
(B;0'0"),is the value of <ﬂjt9'<9"> at t=to,
At=At"=0. Letting f'=0,At'=0 in the
equation (23) and comparing the result with
the equation (10) shows that

j(kjﬁje'e"(r{, R',AL0,thdK ---- (40)
Substituting the equation (39) and (40) into
the equation (12) we obtain

et

Tik loon(k ka0 s o0k -k atot) ],

r

exp{_p‘;{(H p Kk + K2t —t, )+ kAt + kAt +

2Pk (t-t,)eos0+ 2P0 e 0 (t-t,) TR - 41)
14

Now,dK' can be expressed in terms of
k'and 6 as —27k"’d(cos@)dk’ (cf.

Deissler?).

a<”'>(§’m’t) N 2plr k*(ze')(R, At t)

) Tz;zikj kB,00m(.k)- 000 R K )|
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k’zl‘[exp{—v[l+ p, K ( +k’2Xt—t0)

-1

+ kAt + kAt +2p, kk'(t —t, )cos @ +

2—‘E)r€mij Q,t-t,) ]}d(cosﬁ)}dﬁ'--@z)

The quantity {(ﬁﬂ'@")(l{,k’)—(,bf&’&")(— K,—K')l)

depends on the initial conditions of the
turbulence.

In order to find the solution completely and
following Loeffler and Deissler’ we assume
that

ik,[(8,00m(K,K')- (600" K, —K')|

- 5 (k kr4 k4kr2)
(2ny

where 9y is a constant depending on the

initial condition. The negative sign is placed

in front of §, in order to make the transfer of

energy from small to large wave numbers for

positive value of .

Substituting equation (43) into equation (42),
we get

§<71'>(K,At,t)27z + 2pi2ﬂk2<z'z">(}{, At,t)

r

_ —260T(k2k’4 NG
0

l:j.exp{——[(1+ P, )(k +k? )t -t, )+

-1

kAt + k'?At" + 2 p, kk'(t —t, )cos &

153

14

22Pe o i-t,) Jd(eosd) }dk (44)

Multiplying both side of equation (44) by k%,
we get

@+2—k ‘E=w
ot

P

where E = 27Zk2<2'z">, the energy spectrum

function and w is given by

W= —260T(k2k’4 — Ktk K2k
0

“exp{ + k'ZXt

+2prkk'(t—t0)cos€ +£emij Qm(t—to) ]}
v

+k At

d(cos®)|dk’

Integrating equation (44) with respect to 0,
we have

00

krS kr3
0

{exp{——[ ( k'2Xt
p
_to) zpr emij Qm(t_to)]}:|

\4

+k At

—2p,kk'(t

Tk k” -k k’3
0

{exp{—pl[(u P, )(k2 + k'ZXt —t, )+ kAt +

2prkk,(t _to) + 2P, Smij Qm(t _to)]}:ldk' . (47)
v
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Again integrating equation (47) with respect
to k', we have

SN p;” 2p,
Ty
B —Kv(1+2p,) . . 1+p,
(t—t, )i x exp[ ) (t t°+l+2prm]
X[ 15prk4 N 5p3 _é k6
42—t (1+p,) (+p, ) 2 vt-t,)
P, P s
+ r ____Tr g
5/2
— - 50\/;[);/2 7 eXp{—& emij Qm
42 (t—t, + A2 (1+ py) y
—k*v(1+2p,) P
t-—t — T (t-t —Pr At
(1=t expl— = Pty A
X 15p.k* 5p; 3
a2(t-t, +Atf(1+p,) (+p) 2
k* pr P 8
+ L ———k" |- (48)
v(t—t, +At) {(1+p,)3 1+pr}

The series of equation (46) contains only
even power of k and start with k*.

If we integrate equation (48) for At=0 over
all wave numbers, we find that

dek =0
0

which is indicating that the expression for w
satisfies the condition of continuity and
homogeneity. Physically it was to be
expected as w is a measure of the energy
transfer and the total energy transferred to all
wave numbers must be zero.
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The linear equation (45) can be solved to
give

E—expE2Xk2(t-t, +§)]j wexpR-L Kt —t, +2Lyjdt-+
P, 2 P, 2

JMexpE 2K -t +2Y)
b 2

r

2
3k~ Nk

where is a constant of

integration.

Substituting the values of w from (48) and
J(k) into the equation (50) and integrating
with respect to t, we get

2

£ =Nk opr2 k-t + 24
V4 p 2

5\/_ 5/2
WCXP[—z € mij Qm(t -t )]

2
><exp[L+2p')('[—'[0 + I+ P, At)]x
p.(1+p,) 1+2p,
3prk4 pr(7pr _6)k6

22t -t ) 3w+ pt-t,)"”

43p" —2p, +3K° _ 8\v(3p; —2p, +3)K’

F()

+p ) t-t)"?  31+p)p”
5\/7_[ 5/2
41;./3(1 +prr) )7/2 xexpf2 Emij Qm(t _to)]
2
«exp—X (1+2pf)(t—to+ P At
p,(1+ p,) 1+2p,
3prk4 pr(7 pr _6)k6

X

273t —t, + AT 3u(1+ p,)(t—t, +At)?
_ 4 (3p’r—2p, +3)k*

3(1+p,)*(t-t, +AD)"?

8Jv(3p> —2p, +3)k’
+ 5/2 A1/2 F(T])
3A+p) Py
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n
where F(77)=¢" Iex dx
0

_ V(t_to)

ﬂ_k\/pr(1+ P,)

or 77:k w
p,(1+p,)

By setting f =0 in equation (9) and use is
made of the definition of E, the result is

1) Jew

= =
Substituting equation (51) into equation (52)
and integrating with respect to k, gives

(T3) Nopi2(r+ 507

2 827132

78, Py
4vS(1+p, N1+2p, )"

exp[— 2 ey Qm]

9

+
16T 92T + 5P ATy
1+2p,

9
+

16(T +AT)S2(T +—Pr AT )2
1+2p,

5pr(7pr _6)

16(142p, )T 22T+ Pr_pTy72
1+2p

5pr(7 pr _6)
16(1+2p,)(T +AT)Y2(T +— Pr ATy
1+2p

r

+

35pr(3pf _zpr +3)

8(1+2p )T V2T + 17 PrAgyor2
1+2p

r

35p, (3p; —2p; +3)
8(14+2p, )T +AT) 2T +— P AT)"2
1+2p

r

_8p.(3p; —2p, +3)A+2p,)*"? i 135........(2n+9)
T 322(14p)'2 Snn+12(1+p, )"

T (2n+1)/2 (T L AT )(2n+1)/2
X + 1]
(T + AT /2)2" 02 7 (T 4 AT /2)m D2
———————— (53)
where T=1 - t,.
Equation (53) is the decay law of

temperature ~ energy  fluctuations  in
homogeneous turbulence before the final
period for the case of multi-point and multi-
time in a rotating system.

Results and Discussion

In equation (53) we obtained the decay law
of temperature fluctuation in homogeneous
turbulence before the final period in a
rotating  system neglecting quadruple
correlation terms in comparison with the
third —order terms for the case of multi-point
and multi-time. If the system is non rotating
then Q,, = 0 the equation (53) becomes

AT _
) NS
TR N
9

16T5/2(T+ 1+p, ATY?
1+2p

. 78, P}
401+ p, N1+2p,)?

X

r
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+ 2 +
16(T +AT)3(T +———AT)*?
1+2pr
5pr(7 pr _6)

16(1+2p, )T V2T + 1 PepTyrr2
1+2p,
5p,(7p, —6)

16(1+2p, )T + ATY 2T+ Pr
1+2p

3Spr(3pr2_2pr +3)

8(1+2p )T V2T + 1P ATy
1+2p

+

AT )7/2

r

35p,(3p; - 2pr+3)
8(1+2p, )T +AT) (T +—1—
+2p

AT )9/2

r

8p,(3pr —2p, +3)1+2p,)"* & 135.........(2n+9)

32%%1+p)'"? Enn+12(14+p,)

T (2n+1)/2 (T FAT )(2n+1)/2

+
* {(T + AT /2)P 2 (T 4 AT /2)m )72 !

which is obtained earlier by Sarker and

Islam."

If we put AT =0, we can easily find out

<-|-2> N, p 3127 32
r
2 8rv3/2

2_’_3. pr(7pr_6)+
16 16

7o, p,T'5
o+ p )i+2p )2
35 p,(3p7 -2p, +3) |
1+2p, 8 (1+2p)

[

=AT 2 4BT 7 = Att—t) 2 +B(t—t))* - (59)

41(3-4) 2006

3/2

_ opr
where A= ——— . \/_7[1/3/2 and
_ ﬁgopf ™ 2 i pr(7pr_6)
2°(1+p, J1+2p, ) 16 16" 1+2p,
RS p.3pr —2p +3) ]
8' Aeapy T

which is obtained earlier by Loeffler and

Deissler.?

This study shows that the effect of rotation
in homogeneous turbulence the temperature
energy fluctuations decays more rapidly than
the energy for non-rotating fluid for times
before the final period.

If higher order correlation equation are
considered in the analysis it appears that
more terms of higher power of time would
be added to the equation (53). For large
times, the second term in the equation
becomes negligible leaving the -3/2 power

decay law for the final period.
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