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Abslrul

Ini this paper, a eomprehenzive numerical study is presented for the fully developed thermal flows through a rotating curved
duct with sguare cross section, Numercal caleulations are carned out over a wide range of the Tavler number 0= Tr = 3000
for two cuses of the Dean numbers, Da = 1000 and Dn = 2000, A wemperature dillerence 15 applied across (e verticul
sidewalls for the Groshof number Grr = 500 where the ouler wall is heated and the mner wall cooled. Spectral method i= used
as a basic tool to solve the system of non-linewr differential eguations. The rowton of the dect about the center of curvature is
imposed, and the effocts of rotation (Coriolis foree) on the flow characteristics arc investigated. As a result, multiple
bramches of asyouneinic siexdy solulions wilh (wo-, three- aed four-vorex soletons are oblaed, Linear stabiliy of the

stendy solutioms is also investiguted.

Eeyword: Eotating curved duct, Secomdary [ow, Dean nueber, Tavlor number.

Introduction

The study of lows and heat transfer thr ough curved ducts
and channels is of fundamental interest because of its
practical application in chemical, mechanical and biological
cngincering. Doc to cngincering  application and  their
iniricacy, flow in a rodating curved duct has heoome one of
the most challenging rescarch ficlds of fluid mechanics, A
quantifative analogy belween MNows in stalbicosry corved
pipes and orhopooally colting sinozhl pipes has been
reported by Ishigaki (1993 19496}, Tuking this analozy as 4
basis, this study describes the characteristics of morc
gencral and complicatcd flow in rotating curved docts,
which are relevant to systems involving helically or spirally
coiled pipes rotating abouat the coil axis. Sech ratating Mlow
passages are wmed in cooling svstcms in rodating mschinery,
The flow systems are alio encountersd o separaton
processes; scientists have paid considerable attention n
order o study the charactenstcs of the [ows n Lhese
rotaling syslems. The present work 15 oo the [ully developed
bilurcation struclure of the [orced cooveclion in o tightly
voiled duct of square cross-section. The tlow gcometry s
illustrated in Fig. 1. A viscous tluid iz driven hy a
streamwise pressurc gradicnt to flow through a square doet
with a streamwise curvature and a anifoem wall heat flux.
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Buch Nows and transpont phenomena are the subject of
mlense Invesbpalions due W ils inonsic inlerest and it
relevance o a host of aress involving curved passapes and
surfuces [rom piping systems for variows fluids o hlood
flows in the human arterial system (Wang and Yang, 20M;
Wang and Lin, HHiTa).

The forced convection n a curved duct of sguare cross-
section  is  characterized by the throee  dimensionless
ZOVCIMING paramcicrs: one geomctrical parameter a (the
curvature ratin defined by L7, the ratio of duct width T over
the rodivs of curvalure L (Fig. 1), one thermophysical
parameter Fro{the Prundidl number) and onc dynamical
paramcter D the Dean number. The fully developed
hifurcation structure of the forced conveclion in lovsely
colled duets has been well siedied in low Deun number
region [Winters, 98T, Daskopoulos and Lenhaff, 1989],
The readers are referred o (Yang amd Wang, 2003; Mondal
ef. al.. 2007} [ur the effects of rotation-indoced Corinlis
force and huoyancy force on flow rmultiplicity in loosely
coiled ductz, The location of Il amd balurcation points
was Tound 10 be insensitive 10 @ [or curvature ratios less
thamn (.1, bat an higher curvilure ratios, they move w higher
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Theiin nonbess (Wincers, 1987 Tpsn iaceasing the Dean
numlsee, A recher  hifurcation  swwetwrs with o opew
lirnithiturcation points, solution branches wid cormplicatzd
Doy stmuciuces 35 chiwined OWooe and Lin, 20070]) baciuss
el the strunger ann-lineariy o the prosdem. Beeaose of the
Tack @f salotion soractwres in high Dean sumber vegion.
there s a loag-standing conirarersy over sclucion: obtaincd
by difterent methods witbout considering the multplicity,
The preseol work is, herelore, o elilively comprelensive
shody oo the Bifiicarion stnective for the Tamomar occed
convecticn in & romating curved dosd of sowws emnss-geciion
in a hizh Dear namber ezgion, because it has pacncal
applications in metallic iedostry. mos widines, clooric
prnEniursToolors ely.

Cine of the illl-en-_':iliug ]rEn.-en:llln:rl:l al the Tl I|1n_|l.|t_'|‘| il
curved duet s the bifwrcation of the flow bezawse acnzeally
there exist iy slendy soluons due o chonnel curvalure,
Many  rescarches  bhave  perfoored  espermental and
numencil investzaton oo developing aed fully devaloped
curvad duct Mowz, An eady complele bilenciion sudy of
two-dimensiona’ 2000 fowe thinogh a coeved duet with
sjuiare oross sechon war perdormed by Winters JL9ETL
Hrwever an estznsive trescrnent of the Tow through o
curvied square duct was parformed be Mondal 0. He
ol & close reliionship beoween the unsteady solutions
and the bifurcation diagram of steady selutons, Tahigaki
(1885 expmined the flow strvcture and friction Sacoor
pemerically for oth the counterralaing aml co-rolating
curved circular pipe with a small curvaore, Zharg ef ol
C2H00]) exammned the o in o molating corved annular pips
and found an eight-cell pheasmenon nf the secondary Tow,
Splmi oef af (199 cxwmined the combined effecrs of
spedeam redahon aud corenlome on the halusenBon stmctune of
two-dimenzional flows in 4 sotating corved duer wily sguare
cross sechion Woang and Cheogo (185%5), cmpleving Giniez
violamz method, examined rhe lowe choars emesdns gl e
runsfer in curved squarc ducts for positve sotation and
frnel reverse secondiny D Jor (he co-molilion cuses,
Selmi and Memdukumer (199 and Yamaminen e ol 990
performed the sudies on e Cew characleristics in rooating
curved  roctungular  ducts, Yamamoon e ool 1999,
ernployviog W spectrul mthod, examined (o fow structuns
and the flow e ratio o e Oow iooa octaling curved
square duwer and found a mix-cell phanmmencn of e
secoodary Jow, Zhang of ol {2001 investicuied the
compined offzcts of the Conolis foive aisd e cemicilugal
loree on ohe Jows In rowcing corved recrangular dieces
numerically.  Yang  and  Wang  (BOUA] perlormed
compreiiensive numerical study oo hifurcarion souenre and
stabiliny ol solugms foe Gormar mised coneeoion in oa
rolaling cucved duct of sguare cross sechion.
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Tt s well krown thar, the fluad I'|-::-l.vi||g i TULng CuTeed
duaet iz :-‘.IJh.-l:!-l:'I:I:ﬂ ter ben foices the Corlis a'.--.'-cr::l.'.I cipse] b'_'r
the rataton of the duct, and centrifugal fores cawsel he thy
vurvilurg vl e ducl, These two Torces wltect cach ather, as
a resull |.‘:.'||'|"|:I|E:-i kelivine ol 1he '\.'h.:lln:iil'r:," Mo amd dhe
axial flow can be obtained. For fsathermal Nows of @
constant proporty fluid. the Coriolia force rzads oo peodiee
vorticity while cemirifueal ferce is purely Ewvdrostatic. When
A leoperater doduced voriation of Duid densiy weeurs for
nan-rsathernnl I'Ilw.':t:_ batly Coenslis |:{'r|[r|||.J_;4|: lwpe
Taeyancy forces can condribute to the penemtion of wanicly
Shfonedal e el 200070, These beo alfaets of eedalion @ahsr
ciobancs o covrterast zach athar in 2 aon-locar oo
depending on the direction of wall, heat Aoz and e flow
dangain, Thereloee, the ellzol ol e molation of te syatem is
moee subtle and complicated and yields new; neher Teatores
of flow and heat weahsfor in penesal. bifursation aid sabilic
in zariculur, for non-isotherreal tlows. Becondy, Mondal ef
el P07 peclared pumecical prediclion of e non-
isptherma’ flows thiough 8 roating cuved squane desl amd
revealed some of sich new feafores. They  perdosme
numecrizal Crveatgation of the flows with a lemperatore
diffcrence bevacon the vemical sidewalls for amall Grashof
number (5 = 1HD aod ubcdned  moultiple brunches of
soluzions, However, thare is ne Koo stady ca bifurcatione
and stabality Tor lorved comvection in a roting curesd duct
wilh =g eross sectiun o lage Grashol nwmber. The
prasent paper i, therefnie, an attempt o Gl up 12os gap wb
the study of the flew charactodstios throogh a solanng
curved  square duet with  ditforentially  heatcd  wotical
sidewills for large Grashof number,

In the presenl paper, J comnprehensive nomedcoul swdy s
gosentod for fully developed ran-dimensicoel Do of
visvols  invomopressitle Muid throogh oo rotating curee
syuize Gl Flow claleristics are investigousd over o
wide runze of the Tavkor number 0= 7 2 300 for twe
cistss of the Deun numbers. £ = 10000 and L = 20061
Studying cha effcors of oo cn the fleas clariciemstivs s
s rrperlimt abjestiee ol Lhe present stady.

Crveriing Sagatins

Consider a ydeodynamizally and thermally Dol develope:d
twu-dimensionwd fow of viscows  incomprasgible  Flid
thnagh 3 rodaling carved sguares duet, whese heisht acd
width we 2hand 21, eespectively. Tn ihe prosent case,
hi=1. F‘igIJI'E | showes rhe condhinale Swslern wialh relevninl
wrtatian<, wleare s ke cemler ol the dugt cross-seotion and
L is the rudius of curvarore of the doce The £ and v aves

are niken o he innothe hwmecntl and vemtool directions
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respectively, and 2" is the coondinate Along e cenler-line
of the duct, i.e., the axial direcion. The svsiem rolutes at a

constanl  amgular wlmity.!l‘;.m'mmd the v axis. [t is

assumed that the outer wall of the duct is heated while the
inncr one is cooled. The temperature of e ouler wall is

'.F"]+.'I.f' amd that of e inmer wall 15 ]"D —AT |, whern

AT = 0. It is also assumed thal the low is uniform in the
axial direction, and that it is driven by a constant pressure

—JP
gradient U[G=T]ﬂmg the centre-line of the duct

I
Then the continwity, Mavier-Stokes and energy eguations,
terms of dimensional variables, are expressed as:

Continuity equation:

Hu'_l_@iv'_'_u’_n {n
o' dy"
Momentum equalions;
8 au: au_! au.r .r: 1 . Pi
=t — 1 —— —— HIT'H."———{__j -
di ar dy’ r o oar
(2)
| 20O 1w
=
I}b': ,a\-‘i _,.ll'.h?: w;z. 1 {]‘LI-"
—tu — vV -
a{ﬂ arl' &-L?J' rﬂ P arﬂ
(3)
o 1 ,
St —— [T EAT
dr ror gy
&H.l' :&Fl' ra“f Hﬂwl' ,
o — 4 b+ 2o =
dt” " & r*
=P, (4)
g4l 3'1'-"' l:i'zlrp' JEH' 1 dw' w -|
a-.."' = 22 +- .2 - .-2
Jc'.rr dr iy r o’ |
Energy equation:
T . a7 ,aT d*r art aT
— 4 —+V .&'ﬁ {, + ],M, +-aé]. (3)
o dr ﬂ_:r L T
Where, r=L=x", and ', v'and ware the
dimensional velocity components in Uwe X', ¥ and

Z directions respectively, and these velocitics are ero al
the wall. Here P is the dimensional pressure, T'is the
dimensional temperature and 1 is the dimensional time, In

the above fommulations, . U, f, & and g are the density,
e kipematc viscosity, Lhe coefficient of  thermal
expunsion, the coefficient of thermal ditfusivity and the
rravitalional poceleration, respoctively. Thus, in Eg- (1) o
{5) the wvamables with primc denote the dimensional
guantitics. The  dimensional  variables  are non-

dimensionalized by using the representative I:ngr.h.f and the
u

represcntative welocity ITo = - . We introduce  the  non-

i

dimensional vartables delined ws:

u’ v VIS,
H=—0, V=—, W=——W,
Uy Uy U,
.'I.'! 1 B 1!.- E.-
X = I J'I =—y L=—
N { I
T.-
T—--.._i,_r__nt:b_j_l P: F-IE
AT d I U,

Whers, w.v and W ure the non-dimensional velocity
components in the x, ¥ and 7 direclions, respectively; ©

is the non-dimensional time, 7 iz the non-dimensicmal
pressure, & s the non-dimensional curvature defined as

ol
] =7 and temperature is nondimensionalized by AT

[lemcefonh, all the varables are nondimensionalized if oo
spectlisd.

Fig. 1. Coordinate system of the rotating curved duct
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Since the Mow field iz wniform in the 7 direction, the

gsectonul  stream  fupction B 15 mlroduced as ﬂgﬁT {3
1 Ela,r 1 dwr ity 3
= =— e 1 1
I+8x dF I+dx ax
2 1— L _
r=— =— (1
Then, the basic equations for the axial velocity w, the 1% Ly

stream function I and temperatere T oare cxpressed in where, Jis the viscusity of the (uid. In the present study,
terms of non-dimensionel verishles with the Bowssinesg  only D and Tr are varied, whiled , Gr and Pr oare

AprOXImation as fixedasdd = 0.1, Gr = 500 and Pr = 7.0 for water.
[1_'_'5_1.}@4_ dw,w) 52 W The rigid houndary conditions for woand ¥ are uzed as;
; = bl (12)
(L4 EIM-EH- PR F.J'_v - & 3 wix, 11}—_ii +1,¥) —E{x. )=
5T aﬂ: (7 J:::;ET;-WME T is assumed 1o be constant on the
Til,wi=L Ti-Ly)==LT{rxl)=x (13)
A § adw 1 H{ﬂlw.wl+
2 14+ 8z dx | ¢ ) (1+dx) oix,v) There 15 a class of solutions which satisfy the following
2 symmctry condition  with respect to the  horizoncal
) F‘ﬂm = 38 dw | 3w planc v = 0}:
2 -
(+ax? L | 148 xd x 3 .2 (%, Yot} = Wiz, ~ v 1),
dwdty |, 8 | %W 357 oy wix, y, )= —wix,—y.1), (14)
B axaj 1+ 5;31 des  l+8x dx Tixy.0)=-Ti{x.—y.1)
25 a aT The solution which satisfies the condition (14) 15 called o
i!f we— g ﬂ.? W-Gpl(l4+dx)— symmetric solution, and that which docs not an asymmetric
148k dx dy dx solution. It should be noted that Fgs. (7), (8) and (9) are
I 1 T oW ®) imvariant wnder the transformation of the varables
— r—
2 gy y=-y
aT I T, 1 a 4T A yod) = wiz,—y, 1)
ar | ) tflgy, 80 Wik, yul) = wlz—y.1) i
ot (1+dx) d(x.v) Pr l+dx dx wrix, v iy = =l —v. i),
(5} T(x, y. 0= -T(x,—p.10)
Therefore, the case of heating the inner sidewall and cooling
whers, the outer sidewall can be deduced directly from the resulls

7 7 ohtained in (s siudy, Equations (7) — (9) would serve as
.-'\, a d d(f.g) = E{}_g_ﬁd_g (107 the basic poverning eyuations which are solved numerically
d ,_-2 i }.3 dix,y) drdy dvdx as discussed in the [ollowing section.

The non-dimensional  parameters D, the Dean  Vemericol Coleulmions

number, (57, the Grashof number, Tr, the Taylor number [ order to solve the Egs. (T) 1o (9) numerically, the spectral
and Pr, the Prandil number, which appear in eguation {(7)  method is used. This is the method which is thought 1w be
and {8} are delmed as: the hest numerical method for solving the Navier-Siokes as
well as cocrgy equations (Gottlieh amd Orseag, 1977). By
this method the variables are expanded in o senes of
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functions consisting of Chebyshey polynomials, That is, the
expansion fanctions @ (x) and W, (x) are expressed as
@y (x) = (1= ) Cy (1),
W (x)=(1-x2)%Cy (x)
wiheve C,(x) =cos(ncos '"(x)) is the n

Chebyshey  polynomial.  wix, v,1), W(x. v.1) and
T(x, v, 1) are expanded in terms of the expansion lunclions

@ (x) and @ (x) as:

(16}

h
order

M N
wix, y.1) =:|'il'!l=lﬂﬂ.§ﬂlwm 1 {Ij‘i&m{x}'ﬁ'ﬂ (¥}

M N
-yl = f ). 17
wix, y.t) méuﬂgjw‘“”{ W g (300 (4D (1T)

_ M N
Tix.. }'rﬂ=m£]ﬂ§-ﬂTmn¢m I:.J.'::Iﬂ:[{_}':l'l'.l'

where, M and N are the troncation numbers in the X and
¥ directions respectively, and w__ W and T e the
coefficients of ecxpansion. In order to obtain a seady
solution WX, V), 4 (X, ¥) a.m:l’-'_"{.:, ¥, the expansion
series (12) is submitted into the hasic Egs. (7), (8) and (9),

and the collocation method (Gottlich and Orszag, 1977) is
applicd. As a result, a sct of nonlinear algebeaic egquations

for w__.__ and T__ are ohtained, The collocation

points i;tr.,_}lj]ammkcnmhﬂ

X; =cos| & 1- - 4 =1, M +1
M+2

yi=cos| x| 1- J . i=L. N+l

J N+2

wherz, i=l....M&land j=1,....,N +1. Sleady

selutions arc obtained by the Mewton-Rapshon ileration
method assuming that all the variables are time independent.

The convergence is assured by king € <10 " where

-]

subscript p denotes the iteration number and £ is defined

as!

2 2
B M N I:F"‘l] . |:g:+l]_ P
£p E._ ngﬂ [Wmn mn] "['Fm n mn.

() _op Y
+ Tmrr _Tm n (139}

In the present npmerical caleulation, for sufMiciently
accuracy of the solutions, we take M =20 and N =20,

Linear stability of the steady solutions is investigatcd
against tan-dimenzional { 2 independent) perturbafions, To
do thiz, the cigenvalue problem i3 solved, which is
constructed by the application of the [unclion expansion
method, twogether with the collocation method, W the
periurbsiion equalions oMamed fom sguations (7)o (9. Ik
15 assurmed thal 11"-:: ume dependence of the perturbation is
e, where |':F=r:l-',.+e'ﬂ';- is the cigenvalue with «F, the

real purl. O, the imoginary part and § = +/—1 . If all the real

paris of the cigenvalue @ arc negafive, the steady solution
is linearly stable, bt it there cxists at least one positive real
part of the cigenvalue, it is lincarly unstable, In the unstable

region, the perturhation grows monotonically for @, = 0 and
oscillatorily fora, # ().

Flux through the Duct

The dimensional total flux € through the duct in the

rotating  coordinate  system 35 calouluoed by
dd
0= [ [wdr'dy' =vdQ (20)
~d—d
11

where, (0= | [ wdxdy is the dimensionless total flux.

The mean axial velocity W' is expressed as

E’:E

21
4d o

Tin the present study, {0 is used 1w denote the steady solution
heanches.
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Besults und discussion

We luke a curved duct with square cross seclion wm] notate 1l
around the center of curvature with an angular '.'n:lnfit_'.-'ﬂ,..

In the present study, we investigate the flow charsctoristics
for the casc of positive rotation of the duct (i.c. positive T,
and dizcuss ihe Mow plesomenoan for two cases of the Dean
oumbers, Cose & Dn=100and Case I D =2000,
over @ wide range of the Taylor number 0 = T = 3000,
Thusz, an inferesting and comnplicated [ow behavior will be
expecied if the duct rotwtion is involved tor these two cascs.

CaseI: I =100K)
Steady solitions and their lingor stalulity aealvsls

By wsing the path contneation technigue as discussed by
Keller (1987), we obtain two branches of steady solutions
for D = LK), The solultivn branches are named the fiese
steady solution branch (Iirst branch, thin solid hne) und the
second steady solntion branch (second brunch, dashed ling),
respectively. The bilurcation structure of Lhe two stcady
solution brunches 1s shown o Vig. 2. 1L should be noted here
that Mondal er af. (2006) also obtained two branches of
stcady solutions for the non-rotating curved squane dice
flows. In the following, the to steady solaticn branches as
well as the flow patterns and lemperature profiles on the
respective beanches are discussed,

3s0f

200

200

1540

5000 3000

r
Fip. I. Steady solution branches for Da =
0=Tr = 3000 and {xr = 5(K1.

0 7000

The first steady solution broanch

The [rst steady solution branch for D = 1000 iz shown
wilh a solid mm Fig. 2 forQ=Tr< 2000 It should he
remarked that beiween (he two branches of steady solutions,
only this branch exists throughout the whaole range ofTr.

43(1)2013

Az seen i Fig, 2 the branch stans TromUr = Oand extends
tn the dircction of increasing Trand decreasing )
(Tr=2000) without any wming throughout it way.
Contours of tvpicul secondary flow and temperature: profile
ure shown in Fig. 3 for several values of Tr on this branch.
As seen in Fig. 3, the first branch is composed of tao-vormex
sodutions. The scoondary flow iz an asymmerric Two-vosrles
solution for smallTr. However as  Trincreases, the
asymmetry gradually disappears and the flow pattern coases
to be nearly symmoetric doc o weak Corniolis foroe, With
strosng centrifugal foroe, howrever, the flow pattern beconies
usymmetric but a5 Tr increascs the Coriolis force increases
which halances the centrifugal force and the flow patiemn
heoomes approimately symimetnc,

Ir TiM 1M 134K 2N
Fig. 3 Conlvurs of sccondary flow (top)  amd

temperature  profile (hottom) on the first
steady solotion hranch af zeveral values of
Tr.

The second sready solition beanech

The second steady solution branch for P = 1000, sl
by a thin solid line in Fig. 2, is solely depicted o Fig, dda).
Az geem in Fig, 4(a), Use branch starts from point 2
(Tr=0) and goes 10 the direction of increasing Tr and
decrcasing ) wp to point b (Tr £742), where it
expericnees @ smooth wming and goes to the direction of
increasing ' and decreasing Tr up to point ¢ {Tr =0,
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Fig. 4: (a) Second steady solution branch for D = 1000
and {rr=30{0. {b) Coolours of secondary

flow (top) and lemperalure prolibe (haliom),

To observe the change of the flow patterns and emperature
distributions, contours of typical secondary flow  and
temiperalure profibe are shown in Fig. 4(h) for several values
of Tr. As seen in Fig, 4(b), the branch is composcd of
asymmelnc wo-, three- and Tooar-vortex solutions. It is
found that on the upper parl of e second heanch, the
secondary flow is composed of asymmetric two- and three
voitex  solutions from point @ w poimt b oas TF
increases (0= Tr < 742) (rom 0, Tlowever, at point &, the
flow becomes [our-voriex solations. (On the lower pan of
the secomd branch, on the other hand, we pet asymmetric

four- vortex solutions (from paint B to pointc ). Lo the case
of lemperature transmission from the outer wall (heated
wall) e Use [uad, it is found that the convection becomes
more frequent with te iocrease rotafion. The sdditional
virtices, which play an imporiant role in the enhancement
of hesst transfior, are called Dean Yertices.

Linear stability of the steady solutions for D = 1000

We investipated lincar stability of the steady solutions and it
15 [oamd that between the two brunches of sulutions, only
the [irs steady solution branch is stable while the second
branch is wnstable, The first branch is parily unstable [ur
small Tr (Ir=153}) However, as ['r increases. Lhe
steady solution becomes stable and remains stable onwards
05 T inereases, The secomd branch is completely unstable
for any valwe of I'r. Thus, we find that the first steady
solution i lincafly stable [orl3.4<7r<2000. The
cigenvilues of the [irst stesuly solution branch are shown in
Tahle 1, where the eigenvalues with the smaxiniwm real pam
of 7 (first cigenvalues) are listed. Thuse [or the Tingarly
stahle solutions are prnted i bold letiers, As seen in the
Table 1, the stubility regivn exists forl3.4 <7r <3000,

and the periurbation grows mnoionically (3, =) for

larger Tr. Therefore, the Hopl bifiercation occurs  al
D =15.4, The region of lincarly stahle sticady solution is
showi with a thick solid line in Fig. 2.

Case [f: Dn=2
Steady solutions awd their linear stalulity snalysi

We  obtain four branches of steady  solutions  for
D 2000 and Gr=300 over a wide rmnge of
TrforQ=Tr Z 3000, The bilurcation disgram of sfeady
sodufinns is shown in Fig. 5. The [our steady solution
brunches are pamed the Fraf sfeady sodusfon branch (first
brunch, thick sulid line), the second stoody sedativon bravieli
{zecond hranch, dashed ling), the thivd  steady solwtion
brgechy (thard branch, thin =olid linc) and the fouwsh seady
sodurion  branch (lourth  branch, dash  dotfed  linc),
respectively. The steady solution bronches are obtained by
the path continwation tochnigue with various mitel guesses
ws discussed by Moadal  (2006). The  hranches  are
distinguished by the noure and oumber of secondary Mow
voitices appearing in the cross scotion of the duct In this
reward, 16 should be ooled that Moodal e ol, (2007} also
oblwined lour braches of stesdy soluttons for Gr = DY, but
our result is dilferenl from theirs in the lormoetion of
solutian strucine.
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Tuble L Linear stability of first the steady solution for Din = 1000 and Gr =500

Tr 0 o, o,
0.0 343.791967 <2857 10" 2053210
14.00 340115764 520363 107 20005110
15.30 339783204 2 8235% 10 * -20934x10
15.40 339.75774% 0.0634% 10~ 2093710
100 320751805 - 1883 ]
62 293, 796058 «20258 ]
M) 248552023 -2.3980 i
1300 211.731554 -2.8342 i
2000 154052355 -3.2493 i
3000 161052355 42194 0

£00 _ Bor——

1=t Branch
- = = = 2nd Bramch S50F
Aid Branch 3
il | === i Branch st
L2,
[ 450 E
':-.-} 400
400
250 3
(a) Ir
300

] 7060 Z00d T00
Ir
Fig, 5. Solution siruclure of the steady solulion branches
for Dn = 2000 and Gr = 500,

The first steedy sodution branch

The first stcady solution branch for D= 2000 and
Cir = 500 is solely depicted in Fig. 6(a) for( < Tr < 3000
The branch starts from point @ (Tr=0) and roes w the

dircction of increusing Tr as 0 decreases which exiends

up o poinl d {Tr=2000) without any twrning. Then, in
wrder 1o observe the change of the flow patferns on the first
bramch, contours of typisl secomdary flow and femperatine
profile are drawn at several values of ¥ras shown in Fig. 6
(b, where il s seen that the branch iz composed of only
twi-vories solulions, Three rypes of forces, Coriolis foree,
strong centrifigol Jorce and beoyeeney foree act on the fluid
purticle ot e same ume, which make the flow pafferns
nearly symmetric. In the case of temperatune profile, heat
transmission from the outer wall 1w the Ouid by convection
hooomes more (reguent with te merease of rotation (1],

Tr 625

Fip. 6 () First steady solution branch with the region of

linear stability for fn= 2000 and Gr=3500.

My Contours of secondary Dow (lop) aod

lemperaiure profile (botlom) oo (he lrsl steady
solutlon hranch at several values of 17,

2000



Wandal, Datta and Mondal a7

The Second steady solulion branch

We draw the second stcady  solotion  branch  for
D = 2000 separaiely i Fig. 7a). The branch hos a
similarity with the sccond hranch obtained for D = 1000,
and the only difference is that it extends wp o lurger Tr.As
seen in Fig.7(a), the branch starts from point a (Tr=10)
and goes to the direction of increasing Tras () decreases
and arrives at point & (Tr = 14000, where it turns fo the
opposite direction with a gentle fwming at point B . The
branch then goes lo the direction of increasing ) and
decreasing Tr up o point ¢ (Tr=0).

B0 .

SE0F

&

Tr  890(b-¢)  T00h-c)

Fig. 7. (a) Second steady solution branch for Din = 2000
and Crr=300. (1) Conlours of secondary Mow
(lop) and lempecature profile (bottomw) for the
seeond steady solution branch at different Tr
(from wpper braoch (o the lower)

400{h-c)

T'o observe (e change of the flow patterns, conlours of
typical secondary Mow and temperature profile on this
brunch are shown in Fig. Tk). Tt is found that the secondury
flow is a two-vortex solution from point ¢ to pointb |, but
when the hranch tums at point & down w poinl ¢ ihe
socondary tlow hecomes o perfect [our-vortex solution.

Thae third steady solution branch

The third stcady  solution  brunch  for Da = 2000 i
exclusively depicted in Fig. B(u). As seen in Fig 3(a), the
branch is very cntangled with many turning pomls on ils
way, like the third branch obtained by Mondal er af. (2007)
fior the thermal flow tor Gr =100,

G0

S—

Lol

sl:r:T
o

450t

400}

200 ¥ a) 21 a)

i)} sl
Tr  460fa) 210(h) 5500d)

Fig. K. (a) Third steady solution hranch for Dy = 2000
and Cor =300, (b)) Contours of secondary Mow
and temperatore profile (hottom) for the thivd
steady solution branch st different valoes of Tr
{from upper brunch to the lower)

550(c)
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We drow the contours of secondary [low and lemperalure
profiles al several valves of TF on this branch in Fig. 8(b),
where it i5 observed thut the brunch consists of two- and
four- woricx solafions, but they arc difforent from those of
e secomd steady solufion branch,

53058

20555

520,55

I—
[_]1} 118075 a1 118125
Tr

Tr 1l6.14

1000 40 by 2k

Fig, %a). Fourih steady solulion braonch for Dv =2
and (rr=300. (h) Contours of secondary
flow (top) and temperature profile (hottom)
for the sceond stcady solution branch at
dilferent valves of Tr (Irom upper bronch e
the lowerl,
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The Fonrth steady solution branch

We draw the [ourth steady solution branch for Dve = 2000,
shown in Fig., 5 with thick solid purple line, s solely
depicied in Fig. 9a), An enlargement of this bramch al poant
&g shown in Fig Wb, o which we [iod det the branch has
lwo parts very close o esch other, the upper part (from
point @ o point B ) and the lower part (from point & o
from point ¢ ). The branch sturts from point g and gocs o
the direction of increasing Tr and decreasing 0 up o

point

mrning and gocs to the dirsction of increasing F as Tr

MTr=1106,14), where il experiences o reverse

docToases.

To ohscrve the change of the flow pattcrms and femperaire
disfributions, confours of fypical sccondary flow and
temperaturc profile at several values of Tron this branch
are shown in Fig, ®e), where i 15 seen that the branch s
compesed of asymmetne [vur-vortes solutions only, The
temperalure distobulion is very vigorous as TrF nreases,

Linear stability of the steady soluvion for D = 2000

We investigate Tingar stabiliny of the steady  solulions
fior fm = 2000 . Tt is found that among four Branches of

stcady solutions only a portion of the first stcady solufion
branch is lincarly stable, while the other branchez arc
linearly wnsrable,

Linegar stability of the [Oest steady soluiion brunch Tor
L= 2000 shows an interesting result, I is lound tat e
hranch is lincarly stahle in a conple of intervals of Tr, one
for small T¢ (0=Tr=<279) and another onc for larger

Tr {92290 =Tr =300} . Thus the branch is lincarly

unstable for the region (279.1<Tr<922.80) The
elpenvidues of the [irst steady solution branch are shown in
Table 2, where the eigenvulues with the maximum real part
of  «F (first cigenvalues) arc presenfed. Those for ihe
lincarly stahle solutions are written in bold leters. As seen

in Table 2, the perurhation grows oscilistonly (g, £0)
for 27O Tr<02280 and moenownically (9; =0)

forTr 2 Q2280 . Therefore, the Pichfork bifircation
occurs at Tr=2T0010 and the Hepl bifurcarion
an e =4922.590,
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Tahle 2: Linear Stability of the first steady salutinn hranch for D = 2000 and (rr = 5000

Tr o a, a,

(1] SELGGS0GS 21525 0
278,10 517.278277 A1T13= 10 8755210}
279.00 517.115175 2T 0 f 87596 10
279.10 S17.096957 323%x 107 B. 760110
305.19 512427375 §HR13 10 88836210
528.30 478130438 5.5473% 10° 9535510
92 80 433, 296084 | 7830 1073 04503 10
922.90 433286412 LB951x% 107} 94591110}
6268 420 491482 L5590 10" “B3s23= 10

16601 375904510 322065 10" 0
2000 356047431 34120 10" \ 0
3000 S=TAlTes ~4.1020x 10" o
Conclusions four-vortex  solutions. In the case of  temperaturc

In this study, a detaled pumencal study on the soluton
struciure and stability of flow through a8 rotating curved
square doct has hcen performed hy using the spectral
method, and covering a wide range of the Tavlor oumber,
0=Tr <3000 and the Dean number 0< Dn <3000, A
temperature  differesce 15 applied across  the  vertcal
sidewalls [or e Grashol number&r =500, where the
ouler wall 15 heated and the inner one cooled. In the present

study, two cases of the IDdean numbers, D= 1000 and -

D =200} has heen discussed in detail. In this smdy, a
detailed mumerical stody on the solution stocnore and
stability of flow through a ratating curved square dea Bas
been pedormed by using the specirul method, snd covering
u wide range of the Tuylor number, 00 = Tr = 3000 and the
Dean number 0= Dy = 3, A wemperature dillerence is
applied  across  the vertical =idewalls [or the Groshol
nunber Gr =300, where the outer wall is heated and the
mmer one cooled. In the present study, ten cases of the Dean
numbers, D = 1000 and Din = 2000 has heen discusscd
in detail.

After a comprehensive survey over Lhe paramelnc anges,
wo branches ol asymmetric steady solutions with oao-,
three-  and  four-vortex solations are obdained
for D = 1N . These woatices are pencrated due 1o the
combined action of the centrifugal foree, the Corioles ferce
and the bpovancy Jorce, The Orst steady soluiaon branch
consists of asymmetric wo-vortex  solutions, while the
second branch is composed of asymmetric two-, three- and

tranzmiszion foom the owter wall (hegied wall) 1o the Mwid, o
15 [ound that te convection becomes more freguent us the
rotution increascs. Lincar stability of the steady solofions
shows that hetween two branches of steady solutionsg only
oae branch (e lrest braoch) 15 hoeardy stable while the
plher branch s unstable. It is found that the Hopf
Bifurcarion occurs at the boundary beracen the stable and
unstable solutions,

For Dy = 2000}, an the other hand, we ohtain four branches
of asymmetric steady solutions. Tt is found that there exist
twe- andd [our- vorex solutions on varous branches. Linear
stability of the stcady solutions shows that only the fiest
hranch iz lincary stahle in a couple of wlerval of Lhe
rotational paramcter Tr, one for small Tr and another one
for larger Tr, and thos the flow undergoes *steady-stable
—r  whstable - steady-stelle’, oF 0 TP 5 imcreassd
gradually. Tt is found that only (wo-vores solutions are
stable, while more than two-vorlex solutions are lincarly
unstable.
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