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Abstract 

We consider a macroscopic traffic flow model tagged on a closure nonlinear density-velocity relationship yielding a quasi-linear first order

(hyperbolic) partial differential equation (PDE) as an initial boundary value problem (IBVP). We present the analytic solution of the PDE

which is in implicit form. We describe the derivation of a finite difference scheme of the IBVP which is a first order explicit upwind differ-

ence scheme. We establish the well-posed-ness and stability condition of the finite difference scheme. To implement the numerical scheme

we develop computer program using MATLAB programming language in order to verify some qualitative behaviors for various traffic

parameters.
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Introduction

Traffic flow has been studied since the first half of the last

century. It is growing field of study because it's many appli-

cations in transportation and urban planning, among others.

The macroscopic approach is analogous to theories of fluid

dynamics or continuum hypothesis. Macroscopic traffic flow

models are characterized by representations of traffic flow in

terms of aggregate measures such as flux, space mean speed,

and density. Unlike microscopic models which represent

individual vehicle movements, macroscopic models sacrifice

a great deal of detail but gain by way of efficiency an abili-

ty to deal with problems of much larger scope.  

The aims of this analysis are principally represented by the

maximization of vehicles flow, and the minimization of traf-

fic congestion, accidents and pollutions etc.

In this paper (section 2), we consider a macroscopic fluid-

dynamic model based on Habermann, Klar (2004). As pre-

sented in Kabir (2004), we study numerical method for first

order nonlinear PDE from Leveque (1992), Larsson amd

Thomee (1997), Morton and Mayers (1996) and based on

these, we present the derivation a finite difference scheme

for our traffic flow model as an IBVP which has been pre-

sented in Section 3. In section 5, we establish the well-

posed-ness and stability condition of the finite difference

scheme which has been presented in Kabir (2006). We devel

op computer program in MATLAB for the implementation

of numerical scheme in order to verify some qualitative traf-

fic flow behavior for various traffic flow parameters. The

algorithm of this program is presented here.

Macroscopic Traffic Flow Model

The macroscopic traffic model developed first by Lighthill

and Whitham and Richard shortly called LWR model was

most suitable for correct description of traffic flow. In this

model, vehicles in traffic flow are considered as particles in

fluid: further the behavior of traffic flow is modeled by the

method of fluid dynamics and formulated by hyperbolic par-

tial differential equation (PDE).

The macroscopic traffic flow model is used to study traffic

flow by collective variables such as traffic flow rate (flux)

q(x,t), traffic speed  V(x,t) and traffic density  ρ (x,t), all of

which are functions of space, x ε R and time,  x ε R+ . The

most well-known LWR model is formulated by employing

the conservation equation

The LWR model comes from two facts and one assumption.
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The two facts are 

a) On a homogeneous road without sources and sinks, the

number of vehicles on the road is conserved and V

b) The flux, q is a product of density, ρ and speed   . 

The assumption is about the existence of a unique relation

between speed and density. In this thesis, we use a non-lin-

ear velocity-density relationship of the form

then the flux is of the form

Finally (2.1) gives a quasi-linear hyperbolic partial differen-

tial equation of the form

The nonlinear density-velocity relationship (2.2) satisfies the

following qualitative physical properties 

The corresponding flux-density relationship is parabolic and

concave and satisfies the qualitative properties as shown as    

It follows that the maximum traffic flow is achieved at a

point of the fundamental diagram for                     and in this

case, the maximum flow is 

Analytic Solution of the Traffic Flow Model

The non-linear PDE (2.4) mentioned at section 2 can be

solved if we know the traffic density at a given initial time,

i.e., if we have the traffic density at a given initial time t0 ,

we can predict the traffic density for all future time t > t0 , in

principle.

Then we are required to solve an initial value problem (IVP)

of the form

(3.1)

The IVP (3.1) can be solved by the method of characteristics

as follows:

The PDE in (3.1) may be written as
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Since the characteristics through (x,t) also passes through

(x0,0) and ρ (x,t)=c is constant on this curve, so we use the

initial condition to write

Equation (3.5) and (3.6) yield

ρ (x,t)= ρ0(x0) (3.7)                                      

Using equation (3.4), (3.7) takes the form

(3.8)

This is the analytic solution of the IVP (3.1).

This solution is in implicit form because ρ also appears in

right side. It is much more difficult to transform into explic-

it form. Therefore, there is a demand of some efficient

numerical techniques for solving the IVP (3.1).

Numerical Schemes for Traffic Flow Model

As mentioned at section 2, traffic model yields

(4.1)

The initial and boundary conditions are given by 

ρ(x,0) = ρ0 (x) and ρ (a, t)= ρa(t) (4.2)                                    

The equations (4.1) and (4.2) produce an initial boundary

value problem (IBVP) which is well-posed for left hand

boundary if velocity, Vmax > 0  and for the right hand bound-

ary if velocity, Vmax < 0 

Equation (4.1) may be transformed as                                                 

(4.3)

Firstly, we would like to derive an appropriate numerical

scheme for the equation (4.3). 

In the case of linear equation (4.1),

In order to develop the scheme, we discretize the space and

time. The discretization of                  is obtained by first

order forward difference in time and the discretization of

is obtained by first order backward difference in

space.

The possible finite difference approximations for                      

Forward difference in time:

From Taylor's series we write

(4.4)

(4.5)

We assume the uniform grid spacing with step size h and k
for time and space respectively  tn+1=tn + h and xi+1=xi+k.

We also write  ρn
i for ρ(x, t)   in equation (4.4) and (4.5).

Now equation (4.3) takes the form

(4.6)

This is the explicit upwind difference scheme for the equa-

tion (4.1).          

Therefore, equation (4.6) leads the desired scheme for the

traffic model.
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The stencil for the explicit upwind difference scheme (4.6) is

presented below 

Well-posed-ness and Stability Condition

It is not straight forward to implement the explicit upwind

difference scheme. One needs to ensure the well-posed-ness

condition

(5.1)

(5.2)

(5.3)

Proposition

The well-posed-ness and stability condition of the explicit

upwind difference scheme (4.6) is given by the simultaneous

conditions respectively

(5.4)

(5.5)

The explicit upwind difference scheme (4.6) takes the form

(5.6)

(5.7)

The equation (5.6) implies that if λ <1, the new solution is a

convex combination of the two previous solutions. That is

the solution at new time step  (n+1) at a spatial-node i, is an

average of the solutions at the previous time-step at the spa-

tial-nodes i and i -1. This means that the extreme value of

the new solution is the average of the extreme values of the

previous two solutions at the two consecutive nodes.

Therefore, the new solution continuously dependent on the

initial value ρ0
i i =1, ..., M and the explicit upwind differ-

ence scheme is stable for 

Then with the aid of the condition (5.3) we write, 

(5.8)

which is the stability condition that can be implemented in

the computer program very easily.

Hence whenever we employ the stability condition (5.8), the

well-posed-ness condition (5.2) can be guaranteed instanta-

neously by choosing

Numerical experiments and results

In order to implement the numerical scheme we develop a

computer program and perform numerical experiments as

presented below.

To find the numerical solution of the IBVP (2.5) we have to

store some variables and values which are presented in the

following algorithm.

Algorithm for the numerical solution of traffic flow model:
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To estimate the error, we consider the analytic solution (3.8)

determined in section 3 with initial condition                  ,

chosen arbitrarily.

(6.3)
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Now consider the initial density as shown in fig 6.3 and carry

out numerical computation in the spatial domain [0, 10] in

km. Fig 6.4 presents the density profile for 3 min, 6 min and

9 minutes respectively.

Fig 6.1: Analytic & Numerical Solution

Fig.  6.2: Relative Error

Fig. 6.3: Initial density                                            

Fig 6.4: Density profile

Fig 6.5: Velocity profile                                           



Fig 6.5 and 6.6 represent the respective computed velocity

profile and flow profile according to the certain points of the

highway.

Conclusion

We have presented the analytic solution of a macroscopic

traffic flow model by the method of characteristics which is

in implicit form. We have derived the explicit upwind differ-

ence scheme for our considered traffic flow model. We have

established the well-posed-ness and stability condition of the

numerical scheme. The relative error between the Numerical

solution and the Analytic solution has been computed using

norm and the relative error is acceptable. Computer program

in MATLAB has been used to predict density profile and

velocity profile as well as flux profile for the implementation

of the explicit upwind difference scheme. The algorithm of

the computer program has been presented. This study can be

expanded for multi-lane traffic flow model which will be our

future interest.
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Fig 6.6: Flux profile


