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Wavelels ans mathematical hmciignys thet cut up dota info different frequeency composcis and then swly ssch compenent with o reselifion
marchod wr s seabe. They have advandages over maditionad Towrier mathods in amalvzing physical siwations whene the sipnal conlyins
disconriowitcs and sbarp spikes. Wavelels wene devebope] independently in the fislde of matenatics, gquantem @diysics, ebecirical
enginsering, sciamic geology cbo. Lbcrchanges between these fiehls during the List twenty years have lod w nkry ocw wavelel applications
mch a5 imape compression, webulonee, human vision, redar and sarthguake prediction. The wavelel copcscatstisn of 2 lunction is 3 new
technique and it docs not beas tme mfoenzuon In ey study ws Uy b nspresent bow continecos and discros luctions epresenl in wivehsl

form, cepecially in the Haar wavelel represenistion.
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Intreductivn

Wavelels are lumclivns thal satisfy cerimin mathematical
reguirements and arc osed in reprosenting data or functions.
Approximation using superposilion of luncions has ealsied
singg (he early 1800%, when Joseph Pourier discovered that
be could supcrposc sincs and comines o reprosent other
functinnz. However, in wavelel analyss, the scale thal we
use 0 look al dats plavs a speciul rol=. Wavelct algorithms
process & data at diffcrent zcales or resolptions, This makes
wavelets inferesiing and wselul For muny decudes, seientists
Tnave wanied more approprists fonctions than the sincs and
cosincs which comprise fhe bases of Fourer analysis, delails
in O Christensen (30040, By their deliniton, these functions
ang nogi-bocal wmd stretch out W infinity for details we can be
zeen Kaiser, G {19%4). They therefore do a very poor job in
approximating sharp spikes, Bul with wavelel analysis, we
s pprosimaling funclions thet sre contwined neatly in
[mite domains, for details M. Miclzon (2004), Wavcles arc
well  suited  for approximating  dale with  sharp
discontinuities, delmls in M. K. Islam (2005} In this paper
wi have imed to reprosent contineous and disercte fanction
into Haar wavcheis

Basic Dhefinitions

‘Wavelets

Wavelets are functions that are confined in finite domuins
and are need o represent data or 3 function, Tn an analogous

way (v Fourder unalysis, which analyros the frequency
conlent in e function using sines el cosines, wavelel
anzlysis analyees the scals of a (unction™s contont with
apectul busis lunctions called wavelets. For defails we refor
Dwebnuth, L. {20602} Fauivalent mathenmtcl comditions (o

waveler arg:

0 [ o dr < os,
(i) [ | xide =0,
{11 T I%ll i < oo

where () is the Fourier Transform of W (x). (i) is
called fhe adussibility condition.

Wavelet Transform

Wavelet wansfornn analysis uses linle wave like functions
knowin a5 wavelels. Wavelets arc used to transform the
signil under Investigation into anather represestation, which
prusents the signal infornsiion in i oo wselul form, Lhis
tranafowrrmation of sigoal s known as e wavelel irnslom.
Mathematcally spesking, the wavelot ransform is 2
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122 Haur Wavelet Representation of Continuous and Discrete Funclivis

convolution of the wavels [unction with the signals. Jean
Morlet in 1982, Gest considercd waveleis as a family of
functions constructed from translations and diludons of 2
smele function called the “maother wavelet™, wx). They um
defined by

1 k.
FJJLI}:;}HF[IJ ]J keR,jz0

where j and &k represeml e scaling parumeler which
measures the degree of compression and the translutivn
parameter which determincs the ime location of the wavelet
respectively. The wavelel transform of § can be delined as

qu,n—drjw[ _ ]{u:ut-:

when: i,ﬂ'[x_k] is the complex conjugatc ol

(2.2.1}

d

J
such 8z continuous, discrele, fast, complex wunslorms a3
well as wavelet packet ranstorms.

W[ﬂ] There are many kinds of wavelet transfomms

Wavelel Serles & Wavelet Cocflicicnls

Mow a day’s wavelet representation of a function s very
populur.  Becanse  Fourier  trumsfommation  Ioss  time
informution bul wavelet representation does ol logs time
mformation. Thos, the series EE{LW":'.I}V;'J (x) 15 valled

Pt
the wavelet series of f if the funetion < L (R}, and then
b =d; = !.ﬂ-‘}*iﬁ'};':ﬂif arc called the wavelet
cuelliients of .

Thi Torverse Wavelet Transform
There is an inverse wavelet transform, defined as

jdl:

f{x}—— ] ek, (0=

x—"“-

which allows the orgizal signal o he recovered [rom its
waveled transform by integruting over all scales and location
j and & Vor the inversc transform, the original wavelet
function is uscd, rather than its conjugute. which is used n

4700) 20312
the [orward transformation and ¢, i the admissibility
EOnatant.

Contlnpons Wavelet Transform

The continpous wavelet mansform of e L,(R)can be
delimed az

T =i 7 j‘.ﬂ-ﬂﬁ(i;&}hﬂﬂwy}, (25.1}

where lF”__[x] is the complex conjugate of g, (&),

w00 =i [ i]mmﬂmhykmujmlatcdhy
j

Joof @ and 1, f(f.k) is called the waveler trunstorm of
Fixd m L (R).

IMacrete Wavelet Transform

The foundations of the DWT 2o back to 1976 when Croser,
Ezteban and Galand devised o lechogue to deoompose
discrete Hme sipmals, Our diserete wavelels ane ool ime-
dizerctz, only the manslation und the scale step anc discnels.
For delails we refer o Addition, P. 5. (2002% It turns out
that il is betler W discrelize it in @ difforent way, fivst we (ix

two positive conslants 4, snd B and definc

W, ()= 0y )

where both A€ Z the discrete wavelet transform of 2
given function f (%) 15 delined by

(261

w,. Flik)= {f-iﬂ",-_;:} ] _ff-l'JIF'J_: {xlelc

—a, [ reoma, x—kiy)dx (262)
where hoth f and ¢ wre contimuous, i (&) s the
complex  conjugate of ¥, (x). Fur eompatational
elficiency, ¢y =2 and f1;, =1 arc commonly wsed so that
resulis lead W u bimery diton of 27 and @ dyadic
translation of K27, (261}

rom wi o omel,

_d
Wialn) =2 (2 x— k)
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Now the equation {2.6.2) cun be wrillen as

_i -

W fUR =(far ) =27 [ FOOR xRy

(26,3
whore joand & ure integers thet seale dilste the mother
fomction W(X) 1o gencrate wavelets. The scale index i
mdicates the wavelel's width and the localion index § glves
s posiion. The discrefe wavelet (rmsform of o riven
fonction  f{x)can be defined in another way, which iz

1 & | =24
. _1
sivenby fl9=—re HZ’E”%‘{I}JFE EHZ#_,..H@
for 2 j, (2.6.4)
1 .
€, =W (. k)= N ¥ f@e, (%)
Jum{l
(2.6.5)

1 T
d; =W, (jk)= T g flxhw,  (x) 268

e f(x)p,, (x), andyr, , (x} are [unctions of the

dscrete verisble  x=012,..M -1  and  we

consider JE0LE T &M = i

Hzar Function

A function  defmed on the real line R ous
1 for xe[0,1/2)

Filc)=1-1 for xc[is2.D) (267 is

0 otherwise
kmown as the Tlaur function, The Haar function wr{x) iz the
simplest example of a wavelet The Huar function wix) is
a wavelet hecause it satisfies all fthe conditions of waveler,
Hazr fingtion is discontinnos at y — 1, %‘ I =md it 25 very
well localized in the time domain. Faar function is knovarny
as Haar wawelel,

Trunslation and Dilation of a wavelel Tunction aod its
representation

o signal amalysis il iz common to comsider fun¢iiens
selonging to the Veclor space

Q{R]:{f:ﬁﬁfiﬁﬂx}dx{ < za envept

for £ =00 funclions in £, (%) are never periplic. Yot il is
possible W obtain serics expansinns like

F0=Ya s

of futions i L (R). Let us consider a0 funcfion

(3.0}

- )
Wlx)=e™ | for @ mssociate a family of funcrions
defined by

W 0= (2 k) xe R & jke 7.

Fur the relutionship between these fanctions and (e givon
function (X} we frst consider j =0 und ohserve when
k=0, then (0 =Pp(2 e~ 0 =i(x)  which
indicate i, () is i il Again

Woulx)=2"w(2% k) =pix—4) for k7.

Thus, the graph of the fanction Wep dppears by iranslating
the graph of & hy k umits 10 Abe right in Fig. 2 to Fig. 3.

In order fo undorstand the rle of the [sirameter §, pulling
E=0 then (00 =292 ). As from Fig, 4
Fig. 7 demwonstrate, the fanctions g are scaled versions
of ¥, when § is 2 large positive number, e graph of
Win 18 0 compressed version of the pruph of W, while
megilive values of J lesd 10 less Incalized versions of .
Pufting everylling togeher, we see (hat the [unctinns W
A sculed and transliled versions of 4 . We say that the

funcinns W YLECE, forn the wavelo: Syslem
associuted 1o the fanction by |

1 + 3
Fig, 1: The function w, (x}=e * = i),
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Fig. 3: The funetion i, (x) = ¢

0.4
a.%

S -1 — 1 2

Fig. 4: The [unction iprm{x]=ﬁ¢"“;-

) 0.5 o 0.5 1

Fig. 5: The funclion w’“[.r}=2¢_m':.
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Figg. 72 The funetinn w_mu}_-lzg o

Our poul s (o expand fonctions m Fo{R) in woms of
functions of the fype ¥, Le Wwo wenl 1o obdain
cxpansions Hke (303 with f, replaced by ¥, . So our
firat problem is w delermine & function §F such that every
function f in L, (R} has a representation of the form

fO=YFd, v, 0. 3.2

FECE

for a cerlain choice of the coefficients {4, | which depend
on the given Dunction . Now put e sdditional condition
on i,
=l 1 ifj=j:k'—k’1
W, O (2)de = )

_.!; B 0 otherwisc

3.5
I'his extra condition implies that if (3.2} s pessihle for all
F e L,{R}, then the ooefficients appesming  in the
expansion of en acbitrary f are unigue and we have 2
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coovenient them, in fact

CEDrER5ion [or
= [ FF, , (x)de

(3.4
where E_r.l'{"t} 18 b complex conjogate of ¥, (x) .The
condition (33) puts extra reafrictions on (e choice of W .
We might ask for choices of W sotisfying some extra

conditions, for delals DY Walnut (200010, Some of the
conditions which appear often are:

(f) that ¥ is smooth, may he even infinilely often
differenizable.

(i) that @ has a computationally convenicnt form: for
cxample thal I is o piecewize polynomial, ie. a spline.

(ii1) thit & has compact suppord, Le. all its funetion valoes
are zero outtkde 4 cerluin bounded interval.

(iv] !ﬁ his compact support.

Husr Wavelet Represenialion of functions

Haar Scaling Functinn

The Haar scaling funclion can be defined as

P 0=x<l
ﬁx-:.:xlﬂ_u{x}_ ﬂ |} i_gcl

asr Wavelet Funclion

Hiar wavelet function @ {x) in terms of =caling fonction
in be writicn as

wix)= z[ NI 1.]Lﬂ
7"

. 1

1, if U=x=—

2

=4-1, if %Sx-:l
0, otherwise.

Haar Wavelet Series and Waveled Cocfficients

Let f he defised on |0, 1), then it has an expunsion in

terms of Hiar functions as follows, For any integer j, = 0,
384

filx)= E{f @, JrHZE{f ¥, o, x)

J-5 k=D

T ] e
= E Coallys (04 3 X d, 0 () {@d.3.1)
J= e k=l

The series (4.3.1) is known as the Haar wavelet seres [ur

the given lunction (. of |, and ¢, o are known s Lhe

Hixir wavelet co-cfficienl and (he Haar sealing co elficient
respectively, Wi,

d;= _[f(IhF;,JIMt &= I Flxhg, e

Haar Representation of Continuous Function
Example 4.4.1

Congader u simple funefion

Loax 0=yl

fix= {ll olherwise.

W can represent () as (4.3.1). Let the starting swale be
Jip =0, sothe sealing coellicient

1
]
e =|i{x"+x Xdx==
e R
And the wavelet cocfficients ure

! .
dyy =I{I “+ Xy (ke = —%, Sirnilarly
o

:il,[l:_.}'._ﬁ' dLI::—;.JE, ri!{l:_i’
32 32 ' 128
7 O 11

=y oy, =, g, = b
U ot M T 28t 2T TR
tmd =0 on, Tleen

b
_f[..l:'} = 4_1 +I=E%m{1} I [_%wu_u{i}}

2 J‘
| 5 Vel = =7 Vulo |+
5
it ’F;.{ - .
. .
g ¥aala)- wu{x;r
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5
Here, vy = '_'F'i}.u{-ﬂr“'- = —lﬂ"u,-{?«']-

34’5

32
5

=

»f

R E ) b ’Fu{ x)

,
e g
9

11
— Fu{-ﬂ _E T (x)

128

i
v =v Dwy= gﬁerH[—E Fm{x}}

vy =1 Bwy

v =¥, Bw

32 32

=v, Bw, Sy

= E%ﬂu}‘r[—i P“{f.l}

5

where, v, and w,, j 20 are the orthogonal subspaces of

N - ""Ewum]

= v, B w, Bw =Ep,_u{x}+

'[—é-wum} {—?‘“—Emn ‘E'wut 1]

32
2 R ———y, ()
123 ”‘ 128
9 11

12 Ve g ¥

L0, 1]end @ is the direct sum.

o

o2 0.4 0.6

Fig. 8: Graph of f(x)

0.5

47(1) 2012

0.2 0.4 0.6

Fig. 9: Graph of V,

Fig. 10: Graph of W,

10L& 1.

O.1
0.05

0.2 0.% 0.6

Fig. 11: Graph of ¥,

—0.05

-Q.1
-0.1ls

Fig. 12: Graph of W,
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1.5
1.25
: [
0.7vs
o.5 I
Q.25
[
0.2 0.4 O.& 0.8 1
Fig. 13 Graph of ¥,
]
1.5
i
.-r""".r
a.s
|
: =
—
0.z 0.4 0:6 0.8 1

Fig. 14: Graph of §{x) and V, jolutly
. . 7/_’
1.5 f__;”'
1 F
” ,F"‘—'i?fl

0.2 0.4 0.6 0.B 1
Flg. 15: Graph of f(x) and V; Joltly

Example 4.4.2.
Congider o simple function

e if D=x<l

fi= {l] otherwise,

We can represent X)) as (4.3.1). Let the starting scule be
j']=ﬂ,m-1ln: sculimg coctficicnt,

1
€, = [ e, (xde=17152
i

and the wavelet eocfficients are
dy o = —0.42083, d, o =~2(0.080670 ).
d,, =~2(0.13300), d, , = —0.03545
d, , =—0.03845, d, , =—0.07506 , end 50 on. Then
Jx) = L1828, (0 +[ 042083, (1) | +

N2 (- 0.080670 iy, o (x) + ]
] V2(-0.13300 ), ()
.\ (—0.03545 ), , (x) — (004352, (x)—

(005845 ), , ()~ (0.07506)w, ,(x)

Vo =LT1828q, (x),w, = .—I'I.4Z{]':I.-L’.HD'M{A'},
[ V2(-0.0806T0)w, i)
) (—0.133{111]?,1,{14
wy = (-0L03545 s, | () - (004552 Yy, (%)

—(0L0SB4 5, L (x) — (007306, , ()
V= By

= LT1828¢3,4(x) 1 | -0.42083, ,(x) |
v, =y Bw =, By, B
= 171828, ,(x)+[ 042083, () |

N V2 (-0.080670 ), ,(x)
kA2 (<0.13300 ), , (x)

Vo= Bwy =y, Bw B,

=1.71828 g o (x)+[ - 0.42083 w,  (x) |+
[ JZ(—0.080670 Y, ,(x) +

V2 (<0.13300)w,,(x) } '

(003545 )y, , ()~ 0.04552 Yy, ()
(005845}, L (x) — (0.07506)p, , ()

where v andw,, J20 ure the orthogonal suhspaces of
L0, 1] and & 15 e direct sum.
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0.2 o.4 0.6 o.8 1
—0.1
-0.2
Fig. 20z Cruph of W,
0.15 _
0.1 [
0.05 1
0.2 g.4 0.F 0.6- 1
-0.05
—f.1 —
~0.15 I
Fig. 21: Graph of V,
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a.d |
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Fig. 22: Giraph of W,
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R ' )
25! ’_,/
2.25 ,f,—f"ﬁ
-
2 .-___.-""-:
.55 J___#- -
1;'.‘-: .__.-"'--- |
1.5 | __:I
T nz 0.4 1.6 0.8 1
Fig. 24: Graph of f{x) and V, jeintly
T e e
2.5 -
2_25 a

=
1.75

Fip. 25: Graph of f{x) and ¥ jointly

Haar Basls Function

The Hawr basis functien B, (z) are defined over the
contimeous amd closed zel0 1] for
x=012 M1, where M =27, Thee
functions arc contained in the M M ransformstion
matrix H. To gencrate H, we define intcger & soch us
K=2+k-] where O£j</-14&=0 or 1 [or

j=0and 124 <2 for j= (). Then the Hour basis
[unclions are

mterval

Mz}=-'1n{z}=ﬁ. ze[0] (4.5.1)
hiz)=h,(z)
zt k1) r< (k—0.5)
2 y
l (:—0.5) (4.5.2)

= 21 if _z-::
:M 2 2/

() otherwise, g€ [(0.1]

The I™ pow ol a M x M Haar mransformation matrix

eontaing the elements of f{z) for

z=0/M UM 2IM, . ... given (ha,
K=2"+k-1 (4.5.5)
D=<;j=70-1 {4.5.1)
iz f=1, k=0orl for j=0 and 155227 fur
FELY {4.5.5}
Example 4.5.1

Consider a signal {1, 4,-3. 0, -1, 5, 3] which cun be
represent by the discrete functions J{0) =1, Ff(l)=4,
fi2)y==-3, fi3)=0, f{4)=1, J3)=-1,
FlBy=5 f(7T)=3, Wc have M=2 _R_2%
Sod =3 From (4.54), we gel0 = 22 when j=0, then
k=0 or | [From (455 and K=2"40-1=0 or
K=2"+1-1=1 [From thc cquation (4.5.3)] when j=1.
thenl = & =2 [From equation (4.5.5)]. Thus for j=1 and
k=1, then K=2, & fur j=1 aml k=2, then K=3. Again for
F2, thenl =k =4 S0 for j=2 and k-1, then K =4 & for
3=2 and k=2, then K=5. Alzo for j=2 ond k=3 them
K = 6 & for j=2 and k=4 then K=7.

Table I : The valwes for K, § und k.

|
P | b Bad| Bl | | ] I I R
Bl v Pl e | | = = =

We get, fiy (0) = g, (0) =

éjI|I )
-
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1 i D=z<03
For, kizi= Fr.u[z}lnj- -1if 0S5=z=l
01 otherwise, ze[0L1]

Ol 0= 1 _L
W)= afglrem-g
27 1 3 1
4 1 5% _ 1
L1 =ﬁum-53=—:{§' b3 -"Mﬂm—ﬁ'
(6 1 7% 1
— |=k, [LT5j=—Fm. = =—
hka k, ({175) N i{g (L5}~ o

J2 i 02z<025

Fox ﬁl{z}:h'm;.;_'ﬁ —J2 i 0255 z<05
0 othcrwise, z[0,1]

0 1 _ﬂ
j""[g] hy, Eﬂ}—:@ "';j "!..ﬂlll'ﬁll—ﬁ-
2 2 3 42
ﬁg[ﬁ] ﬁjjmﬁi_ JE1 j&k J—ﬂl{ﬂ?-ﬁ]——:r,
Hz[i] L 0.5y =10, f, E] Ry, (0.625) =10,
8 R
h, [EJ k (075) =10, alr?] B (D875) =0
] 8

7 i 05<z<075

For, hy(z)= "’ﬂm'jjﬁ —~2 f 0755 z<l
) otherwise, z=[0,1]

Vz

(g em—

ﬁ{é—]=nu{u.11ﬁ;=ni
h,@:mmms::u.

5]= ha(0.625) = ﬁ

47(1) W2

2 FO=sz=0 125
For, by (2)=hy (2)= ={-2 if 0.1255 2 <025
VB 0 otherwise, ze[0,1]

0 2 [ 2
- = 2 - I= A= ——
ﬁakﬂ] - Iy, () i "4[3} i, (0.125) 7
hy %] by, (0.23) =0, : h,[% — A, (0.375)=0.
i .
by s = i, (51 =0 1:4[3 =k, (0.625) = 1),
8 g
B, %}:a,,;{m;:u, &4[% — (08751 =0

2 0F 025= <0375
Far, ﬁ;(z]=hﬂ{a}=]— -2 F03TE=z<05
0 olherwise, 2= 0,1]

L] 1y _ _
s E] hyy (0) = 0 hﬁ[ﬁ]-hﬂmlaﬁ}—ﬂ.

2y _ 3__ 12
G e
ﬁ,[%] o (0.5) =0 Jg[a—hn{tmzs:mﬂ.
hs{g] = I, (0.75) =0, :;[%J: b, (0.875) =0

=2 if 0&25= 7075

0 otherwise, zc [0.1)

2 if L5 r (625
ROr y(2) = hyld) = 1}%

"0 1
h; J By (0} =10 i, ] A, (0L125)=0.
8 e
h, ;}=ﬁn(ﬂ.2ﬂ=ﬂ, hy i]—.ﬁﬂf{pj?j}:u‘
B 8
."5 _ __ZI
A g ] hﬂmﬂ—ﬁ &kﬂ]-m.{mm;_ E
I"'ﬁ 7
By 3] (075 =10 hﬁ[g]ﬁrﬂw.mﬂ-n
L

—2if 0AT =z =1

) otherwise, ze[001]

. 2 if 0752z <0875
R by (@)= )=
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L[%J—.&Mm}:n, n?[% = by, (0.125) =0,

i
;E] By (0.25) =0. k, % = b (0.375) =0,
L
4 5
h‘[i} h, (0.5} =0, f, 2 = b, (0.625) =10
g
6 (7 __ 2
h[g} h{uﬁ}——~ "?j; By 1875 = 7

Now. we construct the 8% 8 wansformation matrix, H, is

1111111
S T TS S R |
20 0 0 o
gollo o0 02222
Rl 2 =20 00 0 0 0
0o 2 20 0 0 0
D000 2 =20 0
0000 00 2 2]
(4.5.6)

Wi have e discrete wavelet transform of 2 given function
S(x) is given hy

1 ol |
f':-ﬂ =ﬁ E f‘,-,,,;ﬂ_k{-ﬂ‘f“
k-1

1 o B (457
EE Zd;,t%.;[ﬂ,"u"jé Jo
i
] 2ol
:ﬁ ¥ f (xX)gp; k(%) (458)
k=0 .
1 2o
d; ;= N Y flxw, ,(x) (4.5.9)
D

Here f(x), @, X} and W, (x) arc functions of (he
discrete varizhle x=0LZ....M—1.we let, j, =0 und
M =2 which wre performed over x=012__ . M-1,

The riven discrete funclions we

fO)=L fF)=4, f(2)=-3, f(3)=0.

f#H =2, fG)=-1, f(6)=5, F(T)=3.

Here, M=2 =8=2" - 5=3 ad with j, =0 the
summation  are  perforeed  over x=10, 1,.........7;
J=00L2 we will use (he Haur scaling & wavelsl
functions and assumes il eight samples of (({x) ame
distributed over the support of Lhe basiz fanctinns, So, (Tum
the [irst row of the waidx. H |, [from (1.5.6)]

Pl 0) = 01, (0) = ,4(2) = ,,(3) =
Pool#) = 05, (5) = @, (6) = @, (T} = 1,

From {4.5.9), we find

Can = W, (0:0) = jﬁ—-zﬂx‘l%u{ﬂ - ;%
i

similarly we get, i, (x) comesponding (o rows of 2, 3, 4,
5.6 7andBol H, .

'P'ﬂlﬂ{uj:[: ﬂ’"_n{|]=|= WM{E}:L wm[3}=11

wu,u {4:' =-1, WM I:ﬁ.]' ==1 w"ln{ﬁj =-—1,
WaeM=-1, w, =2,  w,0=v2
W2 =2, o M=-y2 =0,

WialB =00 w6 =0, w, (Ti=0, w (=0
WalD=0, w (2)=0, w,,(31=0, p,,[4) =2,
v, 8=v2, w6 =2, v, (T=-2,
e =2, vy, (M==-2, v, (2)=0, p, (3=0,
Wy, (=0, w, (5)=0, w,,(6)=0, w, (7)=0,
W (00 =0, w,, (D=0, w,,(2)=2, ¥,.(3)=—2,
o (4) =0, w,, (5)=0, W, (6)=0, y,.(T)=0,
Woa(@ =0, w, (D=0, (D=0, p (=0,
Waa @) =2, () =-2, w,,(6)=0, p,,(T)=0.
W, (=0, y, =0, g, (=0, g, 3-0,
Vo) =0, (5)=0, b, (0)=2, p_ (T)=-2
Agpuin from {4,539}, we get
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7
dl.ﬁ =W; ':ﬂ"n:' - J_ E f':IWM'[I} J:E

2 f5
L=iF
1 . 7
d,, =WF[L1]=EEI{I}F|,LU]——T£
[
d,, =W, (2= —
n =W, (20 = § (W)=
ET‘, (1) = ——
d = = x {.x =1
- u.r'r .z Jﬁ
JE=H-’,{E.3}— E_fl:.‘l’:li‘[l"ul::_r}_ﬂfi

du='-+'.cl4}=ﬁ2.nxw1,4uh=ﬁ

Thus the discret= wavelel teangform of given eighl sample
functions relative to the Haar s¢aling wavelots are

1 T 82 I 6 6 6 4
N R Y R
Using (4.5.8), f(0) =1, f(l)=4, f(2) ==

fG=0, Ji#)=2, fE)=-1, f(6) =5,

f(7y=3 , Thus the graph of the given discrete signal in
waveled lranslvrn is

gg\/ \/_/

Flglﬁ*ﬂnphtdWﬂelttTlmﬁnnitlh:gi‘m
Function

|-h.ll.lrh

12

Conchasion

In our study we disenssed asbout wavelsis, wavelet
izansforms, represent of o funclzon in ferms of Heur wiveler.
Wavelket transform is & new tool W approximate 2 funclion.
By using Haar scaling cocfficients and Tlaar wawvelet
coctficients we approsinmic continuous fumciions such as
algebrzic and cxponential lunctions, We also represent b
discrete functions by Haar discrels wavelel, We represent
contineous and diserete [unctions in fems of Hoar wavelet
because wavelets are well localizsd i both time and
frequency domadn, by vsing wavelet translonm we can scale
and translate the function umd approsimats the funclion by
wsing only a fow cnefficients.
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