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ABSTRACT 

Surface tension (𝛾) formula based on hard-sphere (HS) interaction developed from first and second order Percus-

Yevick (PY) solutions for isothermal compressibility proposed by Mayer et al. has been used to calculate surface 

tension of liquid less simple metals Zn, Sn, and Pb. For calculation of surface entropy (𝑆𝑣) of same metals, we 

have used the formula of Gosh et al. Effective HS diameter and corresponding packing fraction are key 
components of the employed HS theories. These components are calculated by utilizing Bretonnet-Silbert (BS) 

pseudopotential for interactions in metals and the Linearized Week-Chandler-Andersen (LWCA) theory for 

describing liquid structure. Potential profile has been changed two ways; firstly, by changing the local field 
correction functions proposed by Vashishta-Shingwi (VS) and Ichimaru-Utsumi (IU) and secondly, by changing 

the model parameter 𝑍𝑠 (the 𝑠 electron occupancy number). We observe that the variation of Zs and local field 

correction functions changes the potential profile, especially, the depth and position of the principal minimum. 

Position of the principal minimum is responsible for estimation of effective HS diameter. Surface properties of 
the concerned systems have been changed a little bit with different values of effective HS diameter. Calculated 

results of 𝛾 suggest that first order approximation of PY solution for 𝜒𝑇 works better than that of second order. 
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1. INTRODUCTION 

Investigation of surface tension (𝛾) and surface entropy (𝑆𝑣) of simple metals and their alloys in the 

condensed state has attracted scientists, technologists, and metallurgists for their multiple 

applications in science and technology as well as in the academic research [1-7] since a few decades. 

Determination of 𝛾  is an essential factor to explain several phenomena, such as gas bubble 

nucleation, gas absorption, and undergoing metal reactions [1]. Along with these numerous physical 

characteristics, some material processing methods such as sintering, soldering, dying, brazing and 

wetting, etc. [1-12] require knowledge of physics at surface for better understanding. 

Statistical mechanical theory [11, 13-15], density functional theory [16, 17], various semi-empirical 

models [1] etc. had been developed over the last 70 years for the investigation of surface properties 

theoretically. Apart from the theoretical methods mentioned above, some experimental techniques, 

such as levitated drop [18, 19], sessile drop [20], drop weight [20, 21], oscillation drop [22] and 

others are now used for measurement of surface tension. The limitation of the experimental 

techniques is that they often provide a range of data rather than a single value. The reason behind 

this deviation is as follows. Melting point of the concerned metals is usually high and as a result, it 

is very difficult to remove all contaminants completely both from the environment and the surface 

of the specimen for measurement of the interfacial tensions. 
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Evans, in 1974 [11], investigated 𝛾 of several liquid simple metals using the statistical mechanical 

theory where for effective interionic interaction, they had chosen pseudopotential model, although 

the conclusions for the studied metals underestimated the experimental data that was available in 

contrast to the above studies. Korkmaz et al. [23] applied Fowler’s formula  [14] which has been 

derived using statistical mechanical theory. The authors in ref. [23] also applied it to liquid 

transition metals and the calculated results were also observed to be good in agreement with the 

available experimental data. However, Fowler’s formula only gives us an approximated value for 

a potential which has a long oscillating tail of Friedel-type. If a potential contains such a long tail, 

the integrand of Fowler’s integrand must be cut at a valid inter atomic distance to avoid 

divergency. In another study, Sonvane group [12] studied the atomic transport, such as viscosity 

and diffusion coefficients and surface properties, 𝛾 and 𝑆𝑣 of the concerned systems by applying 

the formula proposed by Born and Green [24]. In their calculation they used different local field 

correction functions are chosen in the pseudopotential. To avoid the divergency observed in case 

of Friedel-type oscillating tail, recently, Amin et al. [6] extended Mayer’s empirical formula [25] 

by utilizing second order Percus-Yevick (PY) solutions of 𝜒𝑇  for calculating 𝛾 of some liquid 

transition metals. The calculated results were also found excellent in agreement with experiments. 

Following the work of Amin et al., recently, Uddin et al. [26] also derived a simple but efficient 

formula for 𝛾 consisting of packing fraction (𝜂). The authors in ref. [26] applied it to the liquid 

alkali metals and found efficient for calculating 𝛾 . It is noted that, if the vapor pressure is 

neglected from the expression derived by Reiss et al. [27] for 𝛾 , it reproduces the formula 

developed by Uddin et al. To our best knowledge, no studies using both first and second order 

approximations of PY solutions of 𝜒𝑇  have been reported yet simultaneously for the concerned 

systems. However, if is understood, one may simply determine 𝑆𝑣 by taking negative derivative 

of 𝛾 with respect to temperature. In this regard, we would like to point out that the number density 

(𝜌) as well as the η of liquid metals changes relatively little around melting temperatures as a 

result of temperature changes. Assuming this, Gosh et al. [2] derived a formula for 𝑆𝑣  [2] and then 

applied to the liquid less simple metals including the concerned systems. Different, from the work 

of Gosh et al., current study focuses the effect potential profiles changed by the variation 𝑍𝑠 local 

field correction functions on the calculation of surface properties. 

Effective pair potentials derived from the various model potentials [28, 29] have significant 

influences on the different physical properties of liquid metals [26, 30]. In the meantime, effective 

pair potential derived from both Bretonnet and Silbert’s [28] pseuodopotential model is observed 

efficient in calculating atomic transport and surface properties of liquid metals [26, 30]. The 

attractive feature of BS model is that it has included both 𝑠𝑝 and 𝑑 band contributions of liquid 

transition metals. Besides this feature, it is easily handled numerically and the local form of the 

model permits the extension of the model for other liquid metals where the consideration of  𝑠𝑝 −
𝑑 hybridization is important. The concerned metals Zn, Sn, and Pb lie at the end of the transition 

metals of the 3𝑑, 4𝑑, and 5𝑑 series. Although they have completely filled 𝑑-bands, the effect of 

𝑠𝑝 − 𝑑 hybridization is still present and strong [2]. Any specific theoretical approach has not yet 

been applied to explain their hybridization effect in detail. Consequently, this impact can be 

roughly explained by altering 𝑍𝑠 of 𝑠(𝑠𝑝) and 𝑑 band’s 𝑠 electrons. As long as the charge transfer 

computation with self-consistency condition permits it, there are no restrictions on using 

appropriate values of 𝑍𝑠. But J. A. Moriarty [31] suggested that effective number of nearly free 

sp electrons for 3d and 4d transition metals should lie within the range like 1.1 ≤ Zs ≤ 1.7. For 

quantitative analysis, pseudopotential must be taken into consideration for the exchange and 

correlation effect. Two sophisticated local field correction functions that follow the 
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compressibility sum rules’ self-consistency are Ichimaru-Utsumi (IU) [32] and Vashishta-

Shingwi (VS) [33]. In this study, we have applied both different 𝑍𝑠 values and local correction 

functions to see the role of effective pair interaction for the determination of surface properties 

namely 𝛾 and 𝑆𝑣. 

Surface properties, 𝛾 and 𝑆𝑣 depend on the structure of liquid metals [5]. From the study of Gosh et 

al. [5], it has been observed that the determination of effective HS diameter (σ) depends on the 

applied theory of structure. Effective HS diameter is the key component of the employed theories of 

this study. Structure of liquid metals (pair correlation function, 𝑔(𝑟)), can be calculated using 

various methods [34], for example, perturbation theories [35-37], integral equation theory [28] and 

computer simulation method [38]. Previous studies claimed that HS interaction can properly explain 

the structure of less simple metals [2, 39]. Following the success, we have employed the mentioned 

theories within hard-sphere Percus-Yevick (HSPY) as the reference system in the present study 

without trying any other reference [40]. LWCA perturbation theory [41] have been applied in this 

calculation. The base of this theory is the WCA [35]. The term LWCA was first used to describe the 

elemental simple metallic systems, according to Kumaravadivel and Evans [42]. This theory already 

has been successfully applied to study the surface properties [2, 4, 5]. We should note here that the 

understanding of σ is necessary to explain HSPY liquid system properly.  σ has been determined by 

using the transcendental equation of the LWCA theory. 

In this paper, firstly, we have calculated 𝛾 and 𝑆𝑣 of liquid metals Pb, Sn, and Zn by BS pseudo-

potential for electron-ion interaction with LWCA perturbation theory for liquid structure. This study 

is a serious test to see whether the local correction function and 𝑍𝑠 can provide reliable results for 

surface tension and surface entropy or not. Organization of this study is as follows. In section 2, we 

have described employed LWCA theory, model potential and the expressions for surface tensions 

and surface entropy in brief. The calculated results are presented in section 3 and then we discuss 

the results with arguments. Finally we summarize the outcomes of this paper in section 4. 

2  THEORY 

In this section, we have described employed theories, in brief. 

2.1  Bretonnet and Silbert model potential 

BS introduced a model potential for liquid transition metals which can explain both the 𝑠-𝑝 and 𝑑- 

bands contributions within the pseudopotential formalism.  

 𝑢(𝑟) = {
∑2

𝑚=1 𝐵𝑚𝑒(−
𝑟

𝑚𝑎
)  𝑓𝑜𝑟  𝑟  <   𝑅𝑐  

−
𝑍𝑠𝑒2

𝑟
 𝑓𝑜𝑟  𝑟  >   𝑅𝑐  

 (1) 

 where, 𝑅𝑐, 𝑎 and 𝑍𝑠, respectively, are the core radius, softness parameter and effective 𝑠-electron 

occupancy number. The unscreened form factor for deriving interionic interaction is as follows  

 𝑉0(𝑞) = 4𝜋𝜌𝑎3[
𝐵1𝐽1

(1+𝑎2𝑞2)2 +
8𝐵2𝐽2

(1+4𝑎2𝑞2)2] −
4𝜋𝜌𝑍𝑠𝑒2cos(𝑞𝑅𝑐)

𝑞2 , (2) 

 𝐵𝑚  and 𝐽𝑚  in Eq. (2) are given in ref. [43] and 𝜌  is the number density. Effective interionic 

interaction obtained from Eq. (2) is given by  
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 𝑣(𝑟) =
𝑍𝑠

2𝑒2

𝑟
(1 −

2

𝜋
∫ 𝐹𝑁(𝑞)

sin(𝑞𝑟)

𝑞
𝑑𝑞).  (3) 

 𝐹𝑁(𝑞) in Eq. (3) is the normalized energy wave number characteristic can be expressed as,  

 𝐹𝑁(𝑞) = (
𝑞2

4𝜋𝜌𝑍𝑠𝑒2)2𝑤0
2(𝑞)[1 −

1

𝜖(𝑞)
][1 − 𝐺(𝑞)]−1. (4) 

 𝜖(𝑞) in Eq. (4) is the dielectric screening function, This dielectric screening function depends on 

the local field correction function, 𝐺(𝑞) and can be written as  

 𝜀(𝑞) = 1 − [

4𝜋𝑒2

𝑞2 𝜒(𝑞)

1+
4𝜋𝑒2

𝑞2 𝐺(𝑞)𝜒(𝑞)
]. (5) 

𝜒(𝑞) in Eq. (5) is the Lindhard function. The local field correction function proposed by  Ichimaru 

and Utsumi (IU) [32] is given by  

 𝐺(𝑞) =
𝑎0𝑄2

𝑄2+𝑎1
, (6) 

where 𝑎0 and 𝑎1 are coefficients calculated by IU in [32]. 

From Eq. (3) it is evident that 𝑍𝑠 and 𝐺(𝑞) are able to change the effective interionic interaction. 

Therefore, to see the role of potential, here, we have chosen another well-known 𝐺(𝑞) proposed by 

Vashishta and Singwi [33] which has the following form  

 𝐺(𝑞) = 𝐴(1 − 𝑒−𝐵𝑄2
), (7) 

 where 𝐴 and 𝐵 are parameters calculated by VS and depend on the number density, 𝜌 and effective 

valance, 𝑍𝑠. 𝑄 in Eq (6) and Eq (7) denotes the ratio 𝑞/𝑞𝐹. Here 𝑞𝐹 is Fermi wave vector. 

2.2  LWCA Perturbation theory 

 Meyer et al. [40] proposed LWCA perturbation theory for calculation of 𝑔(𝑟) of metals in the 

condense state. It has been developed based on the WCA theory [35]. In the WCA theory, the blip 

function is expressed as  

 𝐵(𝑟) = 𝑌𝜎(𝑟)[𝑒(−𝛽𝑣(𝑟)) − 𝑒(−𝛽𝑉(𝑟))] (8) 

where 𝑣(𝑟) and 𝑉(𝑟) are respectively the soft and the hard part of the effective pair potentials. The 

inverse of temperature times Boltzmann constant is denoted by 𝛽. The cavity function, 𝑌𝜎(𝑟) in Eqn. 

(8), is continuous at 𝑟 = 𝜎 and connected to the HS distribution function. It is also identical to the 

hard sphere distribution function, 𝑔𝜎(𝑟), for 𝑟 > 𝜎. We adhere to Meyer et al. [41] when evaluating 

𝑦(𝑟). In LWCA, plotting of the function 𝑟2𝑏(𝑟) with respect to 𝑟 provides in two pointed teeth 

which are approximated using right triangle. After taking Fourier transformation, the blip function, 

𝐵(𝑟), in 𝑞 space is written as  
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 𝐵(𝑞) = 4𝜋 ∫ 𝐵(𝑟)
sin (𝑞𝑟)

𝑞𝑟

∞

0
𝑑𝑟 (9) 

 Expanding the integral according to Bessel’s function, and then taking the thermodynamic 

constraint 𝐵(𝑞 = 0) = 0 we get a transcedental equation which is as follows.  

 𝛽𝑣(𝜎) = 𝑙𝑛
−2𝛽𝜎𝑣′(𝜎)+𝑌+2

−𝛽𝜎𝑣′(𝜎)+𝑌+2
= 𝜑(𝑟), (10) 

 where 𝑣′(𝑟) is the first derivative of 𝑣 with respect to 𝑟. After plotting of the right and left side of 

the Eq. (10), we have estimated effective HS diameter, 𝜎, from the 𝑟 position of the intersecting 

curves. It can also be solved by numerically. Packing fraction 𝜂 is conected to the  HS diameter by 

the relation 𝜂 =
1

6
𝜋𝜌𝜎3. 

2.3  Surface Entropy 

Fowler’s formula [14] based on statistical mechanical theory is given below  

 𝛾 =
𝜋𝜌2

8
∫

𝑑𝑣

𝑑𝑟

∞

0
𝑔(𝑟)𝑟4𝑑𝑟 (11) 

where 𝑔(𝑟),  𝜌 and 𝜎  respectively denote pair distribution function, ionic number density and 

interionic interaction. The value of 𝜂 depends on metal to metal as well as temperature. Considering 

these assumptions and applying the HS interaction, Gosh et al. [2] derived a surface entropy formula 

which is as follows.  

 𝑆𝑉 =
𝜋𝜌2𝑘𝐵𝜎4(2−𝜂)

16(1−𝜂)3 [1 − 0.252
𝜎𝑚

𝜎
(

𝑇

𝑇𝑚
)

1
2⁄

] −
0.189𝜋𝜌2𝑘𝐵𝜎3𝜂(5−2𝜂)

16(1−𝜂)4 (
𝑇

𝑇𝑚
)

1
2⁄

. (12) 

In this work, we have used Eq. (12) for calculation of surface entropy. 

2.4  Surface Tension 

Liquid metals are usually dense. Therefore, they need complex theories to describe them properly. 

The repulsive inter-molecular interaction is usually responsible for determination of  structure of 

liquid metals, and based on this assumption, numerous ideas have been already proposed  [35, 45-

47]. From this concept, we can infer that the intermolecular correlations are governed by the shape 

of the molecules. A hard sphere’s potential is often entirely repulsive. Due to this, only the repulsive 

portion of the hard sphere potential should be mimicked when simulating the interaction of real 

liquid systems [48, 49]. 

This presumption led to the development of many equations that were successfully used to calculate 

atomic transport [49] and surface properties [1, 6]. Mayer [25] suggested the empirical link given 

below for the variables surface tension, 𝛾  and compressibility, 𝜒 , which is based on the HS 

interaction is expressed by the following equation,  

 𝜒𝛾 = 𝜎 [
(2−3𝜂+𝜂3)

4(1+2𝜂)2 ]. (13) 
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Amin et al. [6] developed a surface tension formula using effective 𝜎  based on this empirical 

relationship for liquid noble and transition metals. They did this by employing an expression for 

isothermal compressibility (𝜒𝑇) derived from the PY solution’s second order approximation [50]. 

The expression of Amin et al, for surface tension is as follows  

 𝛾 =
𝜎𝜌𝑘𝐵𝑇[2𝜂(4−𝜂)+(1−𝜂)4](2−3𝜂+𝜂3)

4(1+2𝜂)2(1−𝜂)4 , (14) 

where 𝑇 , and 𝑘𝐵  respectively denote the temperature, and Boltzmann constant. An alternative 

method of the integral equation method, which is rational function approximation has been used. 

The compressibility equation that results from the PY solution’s first order approximation can be 

expressed as,  

 𝜒 =
(1−𝜂)4

𝜌𝑘𝐵𝑇(1+2𝜂)2 (15) 

If we substitute Eq. (15) into Eq. (13), 𝛾, can be expressed as 

 𝛾 =
𝜎𝜌𝑘𝐵𝑇(2+𝜂)

4(1−𝜂)2 . (16) 

Eq. (16) and Eq. (14) have been used for calculating 𝛾 of the concerned metals in this work. 

3 RESULTS AND DISCUSSION 

The calculated results of 𝛾 and 𝑆𝑣 of the concerned systems have been presented at first and then we 

discuss the presented results for various 𝑍𝑠  values and local field correction functions with 

arguments. The second and first order approximations presented in Eq. (14) and Eq. (16), 

respectively, is used to calculate 𝛾. In order to calculate 𝑆𝑣, we have used Eq. (12). Temperature-

dependent 𝜂  and the associated 𝜎  is the main component of all the expressions mentioned. By 

combining the BS pseudopotential with LWCA perturbation theory, we have determined them. 

Potential profiles, obtained by tuning the model parameter 𝑍𝑠  and by utlizing the local field 

correction functions, are the most important components of this computation. 

For deriving the effective interionic interaction from BS pseudo-potential requires three parameters 

𝑅𝑐, 𝑎 and 𝑍𝑠 which are required to fix at first. Among them 𝑅𝑐 and 𝑎 are chosen from the ref. [2]. 

In this study, different fractional values of 𝑅𝑐 and 𝑎 are chosen to see the 𝑠𝑝 − 𝑑 hybridization effect 

in the calculation. All input parameters required for this calculation are listed in Table 1. Besides 

this, the choice of local field correction function also has a big impact on the calculation of 𝑣(𝑟). As 

a result, we have included two separate local field correction functions proposed by IU [32] and VS 

[33] as well. Utilizing the all parameters mentioned the potential profile obtained from them , 𝑣(𝑟) 

is shown in Fig. 1. 
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Fig.  1: Represents the variation of effective pair potential, 𝑣(𝑟) with inerionic distance 𝑟. In (a) solid and dash 

line represent 𝑣(𝑟)  of representative liquid Sn derived employing the IU and VS local field correction 

functions, respectively whereas in (b) solid, dash and dot line represent 𝑣(𝑟) of representative liquid Pb derived 

using effective valence 𝑍𝑠 as 1.5, 1.6 and 1.7, respectively. 

Table 1: Values of the input parameters used in this study    

Metals 𝑻(K) 𝑻𝒎(K) 𝝆(Å −𝟑) 𝝆𝒎 (Å −𝟑) 𝑹𝒄 (𝒂. 𝒖.) 𝒂 (𝒂. 𝒖.) 

Pb 613 600 0.0310 0.0310 1.47 0.307 

Sn 523 505 0.0353 0.0355 1.30 0.273 

Zn 723 692 0.0602 0.0605 1.27 0.285 

Potential profile has been resulted from the sensitive balance between the attractive and repulsive 

pair interactions of atoms in concerned metals. The reason behind these interactions occurring in the 

pseudopotential formalism is due to direct interaction between various ion cores and indirect 

interaction araised from conduction electrons. Local field correction functions in the dielectric 

function play significant roles in the above cases. When VS is used instead of IU, we observe from 

Fig. 1(a) that the potential well depth increases significantly and the first minimum’s position shifted 

towards right a little bit. From Fig. 1(b), we observe that the depth of the potential well increases 

with the increasing values of 𝑍𝑠 by keeping the position of first minimum fixed. 

As we said earlier that 𝜎, and 𝜂 are the primary ingredients of the employed theories. We have 

applied the liquid structure LWCA theory in conjunction with the derived effective interionic 

interaction, 𝑣(𝑟) to calculate them. Intersecting curves of the transcendental equation [Eq.(10)] 

provides 𝜎  which is shown in Fig. 2(a). Then, using the equation 𝜂 =
1

6
𝜋𝜌𝜎3  [39, 49], 𝜂  is 

calculated. In Table 2 and Table 3, along with other relevant experimental and theoretical data, the 

calculated values of 𝑆𝑣  and 𝛾 are presented, respectively. Since the estimation of 𝜎 relies on the 

liquid structure, it is crucial to present 𝑔(𝑟) for a few example systems. As a representative, the 

calculated 𝑔(𝑟) using LWCA theory for liquid Pb is presented in Fig. 2(b) with experimental data 
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[51]. We observe from Fig. 2(b) that the calculated 𝑔(𝑟)  values are consistent with the 

corresponding experimental data. 

  

Fig. 2: (a) shows the graphical method for calculation of effective HS diameter. (b) shows the calculated 𝑔(𝑟) 

using IU and VS local field correction functions, presented by solid and dash curves, respectively, for liquid Pb 

with a fixed 𝑍𝑠 value of 1.6, are compared with experimental data [51] presented by symbol circles. 

Table 2: Calculated data of Surface Entropy (𝑆𝑉) in (Nm−1Kg −1 × 10−3) are presented with the 

available theoretical values [2] and experimental data [13]    

Metals 
 𝑍𝑠 

  

  𝜎(Å)    𝜎𝑚(Å)    𝜂    𝑆𝑉   Theo.  Exp. 

  IU   VS    IU   VS    IU  VS  IU   VS   [2] [13] [13] 

Pb  

1.5   3.008 3.050  3.015 3.054   0.442 0.461  0.066  0.069       

1.6   3.013 3.020   3.016 3.060   0.444 0.447  0.063  0.065     0.067  0.16 0.13 

1.7   3.022 3.010   3.023  3.057   0.448 0.443  0.067  0.064       

Sn  

1.6   2.786 2.837   2.790 2.843   0.400 0.442  0.061  0.067       

1.7   2.797 2.834   2.801 2.842  0.404  0.421  0.062  0.066   0.062 0.19 0.07 

1.8   2.784 2.843   2.790 2.845   0.399 0.426  0.061  0.068       

Zn  

1.3   2.462 2.529   2.470 2.533   0.470  0.509  0.106  0.109       

1.4   2.476 2.537   2.480 2.541   0.479 0.515  0.107  0.102   0.107  0.20 0.17 

1.5   2.487 2.545   2.489 2.548   0.485 0.519  0.107  0.100       

Table 2 shows that estimated 𝜎 value increases when 𝑍𝑠 value is considered larger in the potential. 

It is also seen that VS field with 𝑍𝑠 value provides a little bit larger value of 𝜎 than that of IU. It is 

due to the fact that the position of first minimum of VS which is observed at a little bit larger 𝑟  than 
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that of IU. We also observe that the effective 𝜎 values at the calculated temperature (above melting 

point) is slightly lower than those obtained at the melting temperature, 𝜎𝑚. The reason behind this 

is as follows. When two liquid atoms move closer as a result of the increased kinetic energy due to 

increased temperature, the average distance of closest atoms decreases [49]. This behavior is also 

found consistent with our previous study [2]. These outcomes further demonstrate the precision and 

constancy of our calculations. 

Next, using the obtained 𝜎 values 𝑆𝑣 of the concerned systems are calculated by applying the Eq. 

(12). We have listed calculated values inTable 2. The available theoretical values [2, 13] and 

experimental data [13] are also presented in Table 2. It is seen from Table 2 that obtained values 

using VS are found a little bit larger than those of IU. The calculated results, using both IU and VS, 

are found smaller in magnitudes from experimental data [13] except liquid Sn. For liquid Sn, 

observed surface entropy is well-matched with the experimental data. With increasing 𝑍𝑠 values, the 

variation of 𝑆𝑉 values using IU and VS is negligible and VS follows decreasing trend. 

Table 3: Calculated data of Surface Tension (𝛾) in (𝑁𝑚−1) with the available experimental data 

[20, 19]. Calc.1 and Calc.2 represent the results obtained using first and second order 

approximations of PY solutions of isothermal compressibility, respectively. 

Metals 𝑍𝑠 

𝛾   

Calc.1 

 

Calc.2  Expt. 

[20, 19] IU VS IU VS  

Pb 

1.5 0.217 0.257 0.141 0.153  

1.6 0.221 0.227 0.143 0.144 0.441 

1.7 0.229 0.218 0.145 0.142   

Sn 

1.6 0.138 0.169 

 

0.109 0.120   

1.7 0.144 0.172 0.112 0.122  
0.551 

1.8 0.137 0.175 0.109 0.123  

Zn 

1.3 0.516 0.745 

 

0.294 0.352   

1.4 0.556 0.780 0.305 0.360  0.767 

1.5 0.590 0.831 0.314 0.371   

Similarly findings of 𝛾  of the concerned systems are presented in Table 3. From Table 3 we have 

seen that obtained 𝛾  values using VS are found larger than those of IU. The calculated results, using 

both IU and VS, are found smaller in magnitudes from experimental data [13] except for liquid Zn. 

For liquid Zn, observed value of 𝛾 is well-matched with the experimental one [19, 20]. For both IU 

and VS local field, first order PY approximation of 𝜒𝑇  works better than the that of second order 

approximation. With increasing 𝑍𝑠  values, the variation of 𝛾  values using both IU and VS is 

significant but found random. 

4  CONCLUSIONS 

In the present study we have investigated 𝛾 and 𝑆𝑣   of liquids Pb, Sn, and Zn near melting points 

using the HS theories of liquid metals. For investigation, we have used well-known BS 

pseudopotential model with IU and VS local filed correction functions in conjunction with LWCA 

perturbation theory. We have also applied fractional values of 𝑍𝑠 to see the hybridization effect on 

the calculation of surface properties. Considering the presented results and discussion, following 

conclusions are drawn: 
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(i) BS pseudopotential in conjunction with LWCA theory can be applied for the study of 𝛾 and 

𝑆𝑣 of liquids Pb, Sn and Zn.  

(ii) The effective HS diameter increases with the increased values of 𝑍𝑠.  

(iii)  The calculated results of 𝑆𝑣using IU local field correction functions are slightly smaller than 

those obtained using VS with compared to the available literature values. The variation of 𝑍𝑠 

has the little influence on calculation of surface entropy.  

(iv) Calculated results of 𝛾 for the concerned systems are found close to the available 

experimental data when it is dealt with first order approximation. Hybridization effect is also 

essential for liquid Zn. 
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