
 

Bangladesh Journal of Pharmacology 

Research Article 

Studies on racemic triglycerides as urease 
enzyme inhibitors  

BJP 



 

Introduction 

Triglycerides of fatty acids, are fundamental compo-
nents of oils, fats, and lipids in humans, animals, and 
plants. They are inexpensive and abundant making 
them ideal candidates for structural modification and 
diverse applications. The aliphatic polyol backbone of 
glycerol with three -OH groups containing backbone, 
allows synthetic utility for designing scaffolds for drug 
development. Similarly, benzoic acid and its deriva-
tives, commonly found as natural metabolites in plants, 
animals, and microbial systems, occur widely in food 

sources such as fruits, nuts, vegetables, and seafood. 
Beyond their major role as food preservatives, benzoic 
acid derivatives show a diverse range of bioactivities, 
including antibacterial, antifungal, anti-inflammatory, 
and anti-protozoal effects (Chen et al., 2008). Clinically, 
benzoic acid derivatives such as mefenamic acid and 
meclofenamates are analgesics and anti-inflammatory 
agents used in osteoarthritis, rheumatoid arthritis, and 
other musculoskeletal conditions.  

In this study, 4-(dimethylamino)benzoate was selected 
as the aryl acid due to its previously reported antibac-
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terial and enzymatic inhibitory properties. The electron-
donating dimethylamino (N(CH3)2) group enhances 
lipophilicity and also enables potential interaction with 
the active site, making it a suitable candidate for trigly-
ceride scaffold functionalization (Sheikh and Kazmi, 
2017). 

The amidohydrolase enzymatic family plays a key role 
in diverse biological processes, including N2 metabo-
lism, CO₂ regulation, and hydrolysis of amide (-CONH-
) and ester (-COOR) bonds. Dysregulation of these 
enzymes is linked to multiple diseases; for instance, 
urease mediated survival of Helicobacter pylori contribu-

tes to gastric infections and ulcers, while other amido-
hydrolases like arginase and carbonic anhydrase contri-
bute to cancer metabolism, immune suppression and 
pH homeostasis (Güzel-Akdemir and Akdemir, 2025); 
Grzywa et al., 2020). Hence, selective inhibition of ami-
dohydrolases represents a promising therapeutic appro
-ach. The amidohydrolase family members shares struc-
turally similar metalloenzyme catalytic residues across 
its members, including urease, arginase, and carbonic 
anhydrase.  

Urease (urea amidohydrolase, E.C.3.5.1.5) is a metallo-
enzyme produced by plants, animals, and microorga-
nisms that catalyzes the hydrolysis of urea into NH3 
and CO2. Over 50% of the global population harbors 
Helicobacter pylori, a Gram-negative bacterium that uses 

urease to colonize the stomach, leading to conditions 
such as gastric ulcer and urinary tract stone (Hooi et al., 
2017). This study, therefore, explores novel triglyceride-
based scaffolds for urease inhibition as a first step, 
aiming for low-cost, environmentally friendly alterna-
tives to conventional inhibitors while targeting the con-
served metalloenzyme catalytic pocket shared across 
the amidohydrolase family. 

Safer and facile synthetic approaches using carbonyldi-
imidazole were employed for triglyceride functionalize-
tion, offering structural adaptability and retrosynthetic 
simplicity for future diversification. Urease inhibition 
was assessed as a first step to validate the scaffold 
through bioactivity analysis, with extensive computa-
tional studies used to explore broader inhibitory poten-
tial based on conserved residue interactions across the 
amidohydrolase family. By integrating structure-activi-
ty relationship analysis and molecular docking studies, 
this research identifies potent urease inhibitors and 
elucidates their mechanisms of action.  

In this study, racemic triglyceride derivatives were syn-
thesized as potential inhibitors of urease and struc-
turally related amidohydrolases. Many commercial 
racemic drugs such as propranolol, ibuprofen, warfarin, 
ketamine etc. are effective, simpler to synthesize, with 
significantly reduced costs associated with enantiome-
ric resolution. Therefore, individual urease inhibitory 
activity of both enantiomers of the lead molecule (10a) 
was evaluated against thiourea as a standard reference, 

employing a molecular dynamics-based ligand scoring 
methodology as previously developed (Sheikh et al., 
2024). This approach enables relative evaluation of 
enantiomers within the same dynamic environment, 
confirming whether the (±) racemate is sufficient for 
bioactivity or requires costly resolution into pure iso-
mers and thus providing a foundation for future 
scaffold optimization.        

             

Materials and Methods 

Chemicals and apparatus 

Solvents and reagents used in the synthesis scheme 
were of analytical grade. Cyclohexanecarboxylic acid, 
cyclopentanecarboxylic acid, cyclobutanecarboxylic 
acid, 1,1′-carbonyldiimidazole, tetrahydrofuran, triethy-
lamine base, ethyl acetate, and jack bean urease enzyme 
were procured from Sigma-Aldrich, USA. Sodium car-
bonate was procured from Merck Millipore, Germany. 
The mass spectra were recorded on MAT 312 and MAT 
113D mass spectrometers (Varian, USA). The IR spectra 
were recorded on a Bruker ATR-Alpha spectrophoto-
meter (Bruker Optics GmbH, Germany). The ¹³C NMR 
spectra were recorded on a Bruker AVANCE NEO 400 
MHz spectrometer (Bruker BioSpin GmbH, Germany) 
using CDCl₃ as solvent (Sigma-Aldrich, USA), while 
trimethylsilane [Si(CH₃)₄] (Sigma-Aldrich, USA) was 
used as an internal standard. Reaction progress was 
evaluated on thin-layer chromatography using Merck 
pre-coated silica gel 60 F₂₅₄ 20 × 20 cm aluminum sheets 
(Merck KGaA, Germany). Spots were visualized under 
UV light at 254 and 366 nm. 

Synthesis of compounds (10a-c) 

Monoglycerides were synthesized by esterification of 
partially protecting glycerol i.e. solketal (3) with 4-
(dimethylamino) benzoic acid (6), followed by acidic 
deprotection to yield compound (8). Triglycerides (10a-

c) were subsequently synthesized through esterification 
process using 1,1′-carbonyldiimidazole as an activating 
agent (Figure 1; Arshad et al., 2018). Synthesis scheme 
and characterization of compound (8) had been 
reported in previously reported derivatives (Sheikh and 
Kazmi, 2017). In a round-bottom flask, 10 mmol of acid 
(cyclohexanecarboxylic acid (9a), cyclopentanecarboxy-
lic acid (9b), cyclobutanecarboxylic acid (9c), and 10 
mmol of 1,1′-carbonyldiimidazole were added with 50 
mL of tetrahydrofuran as a solvent. After 2 hours of 
stirring, 2.5 mmol of compound (8) was added into the 
reaction along with 0.52 mL of triethylamine base, and 
the reaction mixture was allowed to stir for 48 hours. 
During the reaction, comparative thin-layer chromato-
graphy was performed to monitor the reaction. After 48 
hours, all solvent was evaporated, and 20 mL of 0.05 M 
solution of sodium carbonate was added to the dried 
reaction mixture. The organic layer was separated by 
liquid-liquid extraction using 3 x 25 mL of ethyl acetate. 
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Evaporation of the solvent yielded the triesters (10a–c), 
which were further purified through column chromato-
graphy using silica gel 60 and an eluent system of 
hexane:ethyl acetate (8:2). The EI-MS, FT-IR, and 13C-
NMR spectra along with the elemental analysis results 
are available in Figure S1-S9 and Table S1 in supple-
mentary data. The atomic labels are provided Table S2 
in supplementary data. 

Urease inhibition activity 

Jack bean urease enzyme (50,000-10000 U/g, 25 μL) was 
used at a final concentration of 0.02 U/well. This was 
mixed with 55 μL of buffers containing 100 mM urea 
and were incubated with 5 μL of test compounds (10a-c; 

1 mM concentration) at serially diluted concentrations 

ranging from 1 mM to 1 μM in 96-well plates at 30°C for 
15 min. IC₅₀ values were calculated via non-linear dose-
response regression using GraphPad Prism 9.0. Urease 
inhibition was assessed by measuring ammonia pro-
duction via the indophenol method described previ-
ously (Weatherburn, 1967).  All reactions were perform-
ed in triplicate in a final volume of 200 μL. Rate of 
change of absorbance (per min) was observed on using 
SoftMax Pro software (molecular device, USA). All of 
the assays were performed at pH 8.2 (0.01 M K2HPO4.10 

H2O, 1 mM EDTA, and 0.01 M LiCl2).  

%Inhibition was calculated from the formula:  

= 100 – (ODtestwell/ODcontrol) x 100 

Figure 1: Synthesis scheme of mixed triglyceride (10a-c). The boxed structure highlights the general scaffold of compound 10, 

showing variable acyl groups (R) derived from 9a–c 
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Thiourea was used as the standard or control inhibitor 
of urease. IC₅₀ values remained consistent across tripli-
cated assays, and dose-response consistency was veri-
fied within the standard error range. Replication under 
identical assay conditions was expected to yield compa-
rable values. 

Docking study 

The jack bean urease containing acetohydroxamic acid, 
was retrieved from the Protein Data Bank (PDB ID: 
4H9M), with a resolution of 1.52 Å, determined X-ray 
diffraction. The PDB file was assessed for quality using 
a Ramachandran plot (Ramachandran et al., 1963), 
which showed 91.1% of residues in the most favored 
regions and 8.9% in additionally allowed regions, with 
no residues in disallowed regions, indicating a high-
quality receptor structure for molecular docking stu-
dies. The original bound ligands including acetohydro-
xamic acid, 1,2-ethanediol, Ni²⁺ ions, and H2O mole-
cules were removed during receptor preparation to 
avoid interference with ligand binding analysis. H 
atoms were added using Discovery Studio (Version 
2021) to complete the receptor and simulate a physio-
logical binding environment (Wang et al., 2015). The 
binding coordinates were derived from the active site 
location of the co-crystallized ligand (size: 30 30 30, cen-
ter: 25.0 -54.0 -25.0). The optimized and preprocessed 
receptor was saved as a PDB file for docking input. To 
perform ligand-protein docking, the AutoDock Vina 
was employed (Gaillard, 2018). Energy minimized 
ligands (10a-c) were converted into PDBQT format 
using AutoDock tools, with Gasteiger charges and 
rotatable bonds. A grid box was defined around the 
binding site of acetohydroxamic acid to encompass the 
key catalytic residues. Each ligand was allowed to 
adapt multiple conformations within the defined 
binding pocket. Docking was conducted using default 
exhaustiveness parameters, and binding energies were 
ranked based on the lowest predicted binding free 
energy (ΔG, kcal/mol). Docked complexes were visua-
lized on UCSF Chimera (Jonathan et al., 2015) and 
Discovery Studio Visualizer. All docking data and 
ligand–protein interaction files are provided in the 
dataset. 

Molecular dynamics-based scoring 

Molecular dynamics run, static factor calculation and 
normalization 

Molecular dynamics simulations were performed using 
the GROMACS software package (Lemkul, 2019) to 
assess the stability of docking poses of ligands 10a(R), 
10a(S), and thiourea, within the defined catalytic pocket 
of the 4H9M (supplementary S1–S19). The 
CHARMM2021 force field was used to parameterize 
and generate the topologies and coordinate files for 
both the receptor and the ligands (Vanommeslaeghe et 
al., 2010). The receptor-ligand complex was centered in 

a cubic box, with a minimum distance of 1 nm between 
the complex and box edges, ensuring at least a 2 nm 
boundary clearance. The solvated system was neutra-
lized with Na+ counter ions and TIP3P H2O molecules 
for solvation. The solvated complex underwent energy 
minimization using steepest descent and conjugate gra-
dient protocols until a maximum force threshold of 10 
kJ/mol/nm was achieved. The minimized system was 
then equilibrated in an NVT ensemble at 300K, follow-
ed by an NPT equilibration at 500 psi. This equilibrated 
setup was subsequently subjected to a 15 nsec long 
molecular dynamics simulation, maintaining standard 
electrostatic and van der Waals cutoffs. The calculated 
properties and their plots, including hydrogen-bonds, 
hydrophobic interactions, and interaction energies i.e. 
Lennard Jones (ELJ) and Coulombic (EC) were extracted 
from the resulting trajectory files using a set of 
GROMACS specific Linux commands also given in the 
[(Equations S20–S27 and Figure S12–S14 in supple-
mentary data). Dynamic molecular dynamics property 
plots were extracted from GROMACS trajectory files 
(.xtc) and visualized using Matplotlib for comparative 
analysis (Han and Kwak, 2023). The dataset includes all 
necessary molecular dynamics calculation files for 
validation and analysis including the molecular dyna-
mics trajectory file (.xtc), final system structure (.pdb), 
computed molecular dynamics properties data (.xvg), 
and their plots (.csv). Additionally, input files (.tpr, 
topol.top, md.mdp, index.ndx, npt.gro) are provided to 
enable reproduction of the molecular dynamics analy-
sis. These files can be used to re-run calculation of num-
ber of hydrogen-bonds (within 0.35 nm), hydrophobic 
interactions, and interaction energies (ELJ and EC).  

Static factors, such as standard deviation and averages 
were calculated for each molecular dynamics property 
i.e. hydrogen-bonds, hydrophobic interactions, and 
interaction energies i.e. Lennard Jones (ELJ) and Cou-
lombic (EC) energies. This provided a single representa-
tive value for the dynamic data of the molecular dyna-
mics simulation (supplementary Table S3).  

To ensure comparability across a range of (static factors 
of) molecular dynamics properties with different mag-
nitudes and units, Normalization was applied on a 
scale of 1-10, to each molecular dynamics property deri-
ved static factor (supplementary Table S3). The norma-
lization formula depended on whether a higher or 
lower value indicates a favorable ligand performance:  

If a lower value of static factor is preferred, as in the 
case of standard deviations of all molecular dynamics 
properties used in scoring function 1, the following 
equation was used: 

                                     1—(Static factor—minimum value)  
Normalized value =                                                                (Eq. 1)  
                                     Maximum value—minimum value 

If a higher value of static factor is preferred, as in the 

 Bangladesh J Pharmacol 2025; 20: 140-149                                                               143 



 

case of averages of hydrogen-bonds in calculation of 
scoring function 2, the following equation is used: 

                                          Static factor—minimum value  
Normalized value =                                                                (Eq. 2)  
                                     Maximum value—minimum value 

Principal component analysis and weight assignment  

Principal component analysis was applied using the 
Python scikit-learn library to the normalized static 
factors to reduce dimensionality while retaining the 
maximum variance across the data. Variance explained 
by each component was visualized as a bar plot, while 
the principal components loadings were plotted using 
Matplotlib and Seaborn for data interpretation (Han 
and Kwak, 2023; Jolliffe and Cadima, 2016). This 
transformation converted the normalized static factors 
of molecular dynamics properties into a set of linearly 
uncorrelated principal components (PCs), each repre-
senting an independent axis of variance within the 
Data. All three PCs (PC1-PC3) were used to capture 
100% of the total variance. The variance explained by 
each principal component is summarized in (supple-
mentary Table S4). The loadings of each molecular 
dynamics property on the principal components were 
calculated to quantify their contribution to the overall 
variance. To eliminate directional influence on weight 
calculations, the loadings were converted to absolute 
values. Min-max normalization (0 to 1) was then appli-
ed to the loadings across components, ensuring uni-
form comparability. The principal component analysis 
variance distribution and principal component loadings 
for scoring function 1 and 2 are shown in supplemen-
tary Figure S15–S19. 

To calculate weights, the normalized loadings of each 
molecular dynamics property were summed across all 
three PCs to capture their cumulative contribution. This 
ensured that the influence of each property was based 
on its total variance explanation, rather than being 
dominated by a single principal component. The sum-
med loadings were then re-normalized again using min
-max scaling (0 to 1) to standardize their range and 
ensure uniform scaling of weights. A final normaliza-
tion step was performed to ensure that the combined 
weights summed to unity, maintaining a consistent 
weighting scheme across properties. The dual normali-
zation process, first at the loading level and then at the 
weight level, ensured that weights accurately reflected 
the relative importance of each molecular dynamics 
property. The final weights (supplementary Table S5) 
highlight the properties with the greatest influence on 
ligand performance. These weights were subsequently 
applied to calculate the final scores for each ligand. The 
entire Python code for principal component analysis, 
principal component loadings, weights for scoring 
function 1 and 2 including is available in supplemen-
tary data. 

The final score for ligands (10a(R), 10a(S), and thiourea 
was calculated by summing the product of each 
normalized molecular dynamics property static factor 
and its respective weight, separately for scoring 
function 1 (fluctuation of interaction) and scoring 
function 2 (strength of interaction) using the following 
equation: 

Score = ∑(normalized static factor x weight)                      (Eq. 3) 

Scoring function 1 and 2 (fluctuation and strength of 
interaction) were determined through standard devia-
tion and average of hydrogen-bonds, Lennard Jones 
(ELJ), Coulombic (EC) and hydrophobic interactions, res-
pectively. The higher scores indicated more favorable 
attributes for interaction. The calculation data files 
(.csv) containing static factors, normalization values, 
principal component (PC) variances, loadings, weights 
for all scoring functions, and final scores are available 
in the dataset. The entire computational methodology is 
shown in Figure 2.  

Figure 2: Entire methodology of calculation of molecular dy-
namics-based scoring (A). Component molecular dynamics 
properties of scoring functions 2, and 3 (B)  
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Results 

Spectroscopic characterization of compounds (10a-c) 

All synthesized compounds (10a–c) were characterized 
using ¹³C NMR, FT-IR, EI-MS, and elemental analysis. 
Spectra are provided in the supplementary data along 
with more detailed discussion on structural elucidation 
approach. IR spectra identified functional groups such 
as ester carbonyls (C=O), aromatic rings (C=C), dime-
thylamino groups (C–N), and aliphatic/alicyclic chains 
(C–H) in the range of 400–4000 cm⁻¹. The ¹³C-NMR 
spectra showed downfield signals at δ 160–180 ppm 
which confirmed ester carbonyls, aromatic carbons 
appeared at δ 110–155 ppm, glycerol backbone carbons 
at δ 60–75 ppm, and alicyclic/methyl carbons at δ 20–45 
ppm. Molecular ion peaks (M⁺) in EIMS confirmed 
molecular weights for (10a-c) and fragmentation patte-
rns provided substituent positions. Elemental analysis 
(CHN) was used to validate the empirical formulae of 
all synthesized compounds. 

3-(4-(Dimethylamino)benzoyloxy)propane-1,2-diyl dicyclo-
hexane carboxylate (10a) 

White solid; yield: 65 %; m.p. 122-124 oC; IR (KBr) νmax 

(cm-1): 2925 (C-H aliphatic), 1692 (C=O ester), 1608 
(C=C aromatic), 1273 (C-O ester), 1205.94 (C-N amine), 
1101 (C-O ether) cm-1; 13C-NMR (CDCl3, 100 MHz, 25 °
C, TMS) δ (ppm): 25.73 (C₃₁, C₃₂, C₃₃, C₃₄, C₃₅, C₃₆ – 6C, s), 

29.11 (C₂₇, C₂₈, C₂₉, C₃₀ – 4C, s), 40.21 (C₂₅, C₂₆ – 2C, s), 
43.31 (C₂₄, C₂₄′ – 2C, d, J = 10.06 Hz), 62.41 (C₂₁, C₂₂ – 2C, 
s), 69.17 (C₂₀ – 1C, s), 110.56 (C₁₀, C₁₁ – 2C, s), 122.91 (C₁₂ 
– 1C, s), 130.71 (C₁₃, C₁₄ – 2C, s), 153.11 (C₁₅ – 1C, s), 
166.31 (C₁₆ – 1C, s), 174.24 (C₁₇ – 1C, s), 175.61 (C₁₈ – 1C, 
s). EIMS: m/z (rel. abund. %), 459.3 (M+,38), 349.2 (35), 

294.2 (16), 239 (7),  165.1(84), 148 (100), 120 (9), 83 (37); 
Anal. Calcd for C26H37NO6,: C, 67.95; H, 8.11; N, 3.05; O, 
20.89; Found: C, 67.97; H, 8.13; N, 3.03; O, 20.90. 

3-(4-(Dimethylamino)benzoyloxy)propane-1,2-diyl dicyclo-
pentanecarboxylate (10b) 

White solid; yield: 76 %; m.p. 108-112 oC; IR (KBr) νmax 

(cm-1): 2925 (C-H aliphatic), 1692 (C=O ester), 1608 
(C=C aromatic), 1273 (C-O ester), 1205.94 (C-N amine), 
1101 (C-O ether) cm-1; 13C-NMR (CDCl3, 500 MHz, 25 °
C, TMS) δ (ppm): 25.91 (C₃₁, C₃₂, C₃₃, C₃₄ – 4C, s), 29.91 

(C₂₇, C₂₈, C₂₉, C₃₀ – 4C, s), 40.21 (C₂₅, C₂₆ – 2C, s), 44.41 
(C₂₄, C₂₄′ – 2C, s), 62.41 (C₂₁, C₂₂ – 2C, s), 69.17 (C₂₀ – 1C, 
s), 110.56 (C₁₀, C₁₁ – 2C, s), 122.91 (C₁₂ – 1C, s), 130.71 
(C₁₃, C₁₄ – 2C, s), 153.11 (C₁₅ – 1C, s), 166.31 (C₁₆ – 1C, s), 
171.51 (C₁₇, C₁₈ – 2C, s).; EIMS: m/z (rel. abund. %), 459.3 

(M+,38), 349.2 (35), 294.2 (16), 239 (7),  165.1(84), 148 
(100), 120 (9), 83 (37); Anal. Calcd for  C₂₄H₃₃NO₆,: C, 
67.95; H, 8.11; N, 3.05; O, 20.89; Found: C, 67.97; H, 8.13; 
N, 3.03; O, 20.90. 

3-(4-(Dimethylamino)benzoyloxy)propane-1,2-diyl dicyclo-
butanecarboxylate (10c) 

White solid; yield: 69 %; m.p. 89-92 oC; IR (KBr) νmax (cm

-1): 2937 (C-H aliphatic), 1693 (C=O ester), 1607 (C=C 
aromatic), 1272 (C-O ester), 1179 (C-N amine), 1102 (C-
O ether) cm-1; 13C-NMR (CDCl3, 500 MHz, 25 °C, TMS) δ 

(ppm): 18.52 (C₂₅, C₂₆ – 2C, s), 24.95 (C₂₃, C₂₄, C₂₇, C₂₈ – 
4C, s), 34.11 (C₂₁, C₂₂ – 2C, s), 40.21 (C₂₀, C₂₀′ – 2C, s), 
62.41 (C₁₈, C₁₉ – 2C, s), 69.17 (C₁₇ – 1C, s), 110.56 (C₁₀, C₁₁ 
– 2C, s), 122.91 (C₁₂ – 1C, s), 130.71 (C₁₃, C₁₄ – 2C, s), 
153.11 (C₁₅ – 1C, s), 166.31 (C₁₆ – 1C, s), 173.61 (C₈ – 1C, 
s), 175.11 (C₉ – 1C, s).; EIMS: m/z (rel. abund. %), 431.3 

(M+,90), 417.3 (3), 318.2 (4),  266 (51), 165.1(52), 148 (100), 
120 (9), 97.1 (24), 69.1 (72); Anal. Calcd for C22H29NO₆,: 
C, 66.80; H, 7.71; N, 3.25; O, 22.25; Found: C, 66.78; H, 
7.70; N, 3.26; O, 22.28. 

Urease inhibition activity 

All compounds (10a–c) showed urease inhibition with 
IC₅₀ values ranging from 14.2 ± 0.7 µM to 28.5 ± 0.3 µM. 
Thiourea exhibited an IC₅₀ of 21.6 ± 0.1 µM. Compound 
(10a) showed the highest activity (IC₅₀ = 14.2 ± 0.7 µM), 

followed by compound (10b) (IC₅₀ = 22.5 ± 0.2 µM) and 
compound (10c) (IC₅₀ = 28.5 ± 0.3 µM). Percent 
inhibition at 1 mM concentration for each compound is 
provided in Table I.   

Computational studies  

Docking study 

Docking with Jack bean urease complexed with aceto-
hydroxamic acid showed that compound (10a) formed 
hydrogen bonds with CME592 (3.07 Å) and Arg439 
(2.06 Å) and π-alkyl interactions with Ala440 and 
His492. Binding energies were: 10a(R) = −6.26 kcal/
mol, 10a(S) = −5.86 kcal/mol, and thiourea = −3.26 
kcal/mol (Figure 3). The strongest docked conforma-
tions for compounds 10a(R), 10a(S), and thiourea are 
illustrated (Figures S11).  

Molecular dynamics-based scoring 

Molecular dynamics simulations (15 nsec) were per-
formed on 10a(R), 10a(S), and thiourea. Two scoring 
functions were calculated: scoring function 1 (interac-
tion fluctuation) gave scores of 10a(R) = 0.890, 10a(S) = 
0.879, thiourea = 0.099. Scoring function 2 (interaction 
strength) gave scores of thiourea = 0.643, 10a(R) = 0.441, 
10a(S) = 0.232. Principal component analysis on norma-
lized static factors revealed that interaction fluctuations 

Table I 

Urease inhibition activity 

Com-
pound 

IC₅₀ (µM) %Activity relative 
to thiourea 

%Inhibition at 
1 mM 

10a 14.2 ± 0.7 152.1 98.5 

10b 22.5 ± 0.2 96.0 90.3 

10c 28.5 ± 0.3 75.8 83.4 

Thiourea 21.6 ± 0.1 100.0 91.7 
Values are mean ± SD; n=3 
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were dominated by hydrogen-bond and hydrophobic-
interaction variability, whereas interaction strength was 
mainly influenced by hydrogen-bond and electrostatic 
energy. The calculated scores for each enantiomer are 
presented in Table II, showing their relative effective-
ness as amidohydrolase interactive agents.  

 

Discussion 

All synthesized compounds (10a–c) showed stronger 
urease inhibition than thiourea, with compound (10a) 
as the most active, outperforming the thiourea, while 
compound (10c) was least active. The inhibition trend 
(10a > 10b > 10c) indicates that inhibition increased as 
the ring size of esterified acid decreased and thus, steric 
bulk of ring of the acyl substituent govern ligand–active 
site interactions. These experimental findings of trigly-
ceride derivatives as effective urease inhibitors were 
further validated by molecular-dynamics based exten-
sive scoring analyses, described below. Urease was 
selected as a representative amidohydrolase owing to 
its conserved catalytic pocket, enabling broader phar-
macophore extrapolation for future studies.  

Higher urease inhibition of synthesized compounds 
(10a-c) compared to thiourea emphasize the superior 
activity of cost and environment friendly pharmaco-
phore of natural origin. These results were analyzed in 
context of previously reported or known urease inhibi-
tors, including hydroxamate derivatives, phosphorami-
dates, urea derivatives, polyphenols, thiols, heavy 
metals, boric acid, and phosphates (Font et al., 2008; 
Zizian et al., 2012; Benini et al., 1998; Krajewska et al., 
2004). Despite their efficacy, many existing inhibitors 
face limitations such as environmental hazards and 
high costs, highlighting the need for safer, low-cost 
alternatives such as the triglyceride-based scaffolds 
described here.  

Moreover, previous literature (Kafarski and Talma, 

2018) on urease inhibition lacks the detailed molecular 

dynamic based scoring analysis that are performed in 
this study to understand the mechanism and structural 
parameters controlling behind activity. This paves way 
for further lead optimization of the lead compound.   

Conventional synthesis of triglycerides has relied on 
hazardous reagents such as thionyl chloride, oxalyl 
chloride, and phosphorus pentachloride or costly cata-
lytic systems such as free CALB (Ravelo et al., 2015) and 
Zn carboxylates (Escorsim et al., 2019). In contrast, the 
1,1′-carbonyldiimidazole-mediated approach used here 
offers a safer, cost-effective, and scalable synthetic route 
for generating structurally diverse triglyceride deriva-
tives. 1,1′-Carbonyldiimidazole facilitated the reaction 
by introducing an imidazole group as a leaving group, 
facilitating the acyl addition-elimination mechanism. 
Glycerol, as starting material, provides the opportunity 
to synthesize a versatile pharmacophore through facile 
reactions. Glycerol's three hydroxyl (–OH) groups 
served as Lewis basic sites for esterification, resulting in 
the formation of triesters (10a-c). These compounds 
exhibited a chiral (C*) center; hence enantiomers exist. 
This synthesis scheme offers the potential for synthe-
sizing further derivatives using higher polyols with 
additional -OH groups, which could yield structurally 
diverse and functionalized derivatives. Compounds 
(10a-c) were synthesized using cyclohexanecarboxylic 
acid (9a), cyclopentanecarboxylic acid (9b), and cyclo-
butanecarboxylic acid (9c), respectively, as the acylating 
agents with variation in ring size. This allowed estab-
lishment of structure–activity relationship (QSAR) 
between ring size of substituted acid and bioactivity. 

Synthesized compounds (10a-c) preferentially interac-
ted with the active site flap residues, particularly 
Cys592 (CME592), which regulates active site confor-
mation. Interactions with Arg439, Ala440, Gln635, 
Met637, and Gly638 were also noted. Compound (10a) 
formed strong hydrogen-bonds with CME592 and 
Arg439, alongside π-alkyl interactions with Ala440 and 
His492. These results are consistent with the previous 
literature on urease inactivation by natural products 

Table II 

Ligand ranking score 

 Fluctuation of           
interaction 

Strength of              
interaction 

10a(R) 0.8900 0.4415 

10a(S) 0.8794 0.2328 

Thiourea 0.0990 0.6438 

 10a (R)                               10a (S)                           Thiourea 
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Figure 3: Plot of docking binding energy of 10a(R), 10a(S) enan-
tiomers and thiourea  
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like quercetin, baicalin, and 1,4-benzoquinone, further 
confirming the results (Mazzei et al., 2016; Macomber et 
al., 2015; Tan et al., 2013). In terms of the binding 
energies of 10a(R), 10a(S), and thiourea, the R enantio-
mer exhibited the strongest binding, followed by the S 
enantiomer, while thiourea, despite its smaller size and 
deeper penetration into the catalytic core, showed a 
substantially weaker interaction, highlighting that both 
enantiomers contribute comparably to the potency of 
the racemate. Unlike thiourea, bulkier scaffold of com-
pound (10a) interacts more extensively with the active-
site flap residues CME592 and Arg439 key regions two 
key conserved residues within the catalytic pocket, pro-
viding mechanistic justification for enzyme inhibition 
and further validating the superior IC₅₀ of (10a). 

Since the most active compound (10a) was formed as a 
racemate, it was necessary to check if both enantiomers 
give similar performance as ligands on urease, mole-
cular dynamics simulations were conducted on pre-
docked conformations of 10a(R), 10a(S), and thiourea, 
over a 15 nsec production run. This timeframe was 
selected to balance computational efficiency with suffi-
cient conformational sampling and equilibration for 
evaluation of dynamic performance of ligand. To eva-
luate the individual urease inhibitory activity of both 
enantiomers of the lead molecules (10a) against that of 
thiourea, deep molecular dynamics based ligand scor-
ing methodology was implemented, developed before 
(Sheikh et al., 2024). Unlike traditional static approaches 
such as docking, quantum mechanics (QM), and rule-
based scoring, this molecular dynamic based scoring 
approach integrates real-time ligand-protein interaction 
for a more physiologically realistic assessment of ligand 
behavior. Traditional molecular dynamics simulations 
generate time-dependent interaction data that cannot 
directly compare ligands for ranking purposes. This 
approach overcomes this shortcoming by extracting 
dynamic properties including hydrogen-bonding, 
hydrophobic interactions, Lennard-Jones and Coulom-
bic interaction energies, and transforming them into 
numerical scores through normalization and principal 
component analysis. This generates final scores in terms 
of both stability and strength of interaction with 
protein, thus giving an in-depth picture of individual 
ligand performance. This allows for a relative 
evaluation of both enantiomers within the same dyna-
mic environment. Such dynamic evaluation also allows 
pharmacophore prioritization without physical resolu-
tion, offering a computational strategy applicable to 
other enantiomeric scaffolds targeting conserved enzy-
me pockets. This confirms whether the (±) racemate 
itself is sufficient for bioactivity or requires costly 
resolution into pure isomers. This insight establishes a 
foundation for further refinement and development of 
highly potent pharmacophore, enabling the optimiza-
tion of molecular features that enhance selective 
efficacy. The molecular dynamics simulation converted 

static docking poses into realistic time-based dynamic 
models, enabling the ligands to adapt energetically 
favorable conformations within the binding pocket. The 
extracted properties from the dynamic run were 
grouped into two scoring functions. Scoring function 1 
captured the fluctuation of interactions through stan-
dard deviations of number of hydrogen-bonds (within 
0.35 nm), hydrophobic interactions, Lennard-Jones (ELJ), 
and Coulombic (EC) energies). Scoring Function 2 
evaluated the strength of ligand-protein interactions 
using the averages of the same four molecular dyna-
mics properties. 

To assign a single numerical value to large time-based 
data of molecular dynamics properties, static factors 
were extracted as either standard deviations (to assess 
fluctuation) or averages (to assess magnitude) and were 
normalized to a scale of 0–1 (Eq. 1 and 2), depending on 
whether lower or higher values indicated better 
performance. Scoring function 1 assessed the consis-
tency of ligand–protein interactions. Thiourea showed 
the most unstable interactions across hydrogen-bonds, 
hydrophobic interactions, and both energy terms. In 
contrast, both 10a(R) and 10a(S) maintained highly 
stable and consistent interaction profiles, reinforcing 
the functional viability of the (±) racemate. Scoring 
function 2 determines on the magnitude of interactions. 
While thiourea dominated in polar contacts such as 
hydrogen-bonds and electrostatic energy (EC), 10a(R) 
demonstrated stronger van der Waals and hydrophobic 
interactions. 10a(S) showed a weaker interaction profile 
overall, though again not significantly different from its 
enantiomer. These findings support the conclusion that 
the (±) racemic mixture of compound (10a) can act as a 
potent inhibitory agent without requiring enantiomeric 
resolution. 

Principal component analysis was applied to the nor-
malized static factors to evaluate the contribution of 
each molecular dynamics property to overall ligand 
performance. For each scoring function, three compo-
nents (PC1–PC3) were retained, collectively explaining 
100% of the variance. Principal component analysis 
loadings revealed that scoring function 1 (interaction 
fluctuations) were largely shaped by standard deviation 
of hydrogen-bond and hydrophobic interaction. Scoring 
function 2 (interaction strength) was mainly determined 
by averages of hydrogen-bond and electrostatic energy 
(EC). Weights for scoring were derived from normalized 
Principal component analysis loadings, ensuring that 
each property’s contribution was fairly represented 
across all variance components.  

In terms of scoring function 1 (fluctuation of interac-
tion) the highest score was observed for 10a(R) (0.890), 
followed closely by 10a(S) (0.879), indicating that both 
enantiomers formed relatively stable interactions with 
the protein throughout the simulation. Thiourea scored 
substantially lower (0.099), highlighting its poor 
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interaction consistency. Scoring function 2 (strength of 
interaction) thiourea ranked highest (0.643), reflecting 
its favorable energetic profile despite interaction 
inconsistency. The enantiomer 10a(R) scored moderate-
ly (0.441), whereas 10a(S) had the lowest score (0.232), 
suggesting that while its interactions were consistent, 
they were energetically weaker overall. Taken together, 
these two scoring functions reveal a composite picture 
of ligand performance. 10a(R) combines consistent and 
strong interactions, emerging as a balanced candidate. 
10a(S), has high interaction consistency, and fair level 
interaction strength. The similarity of their scores across 
all two scoring functions demonstrates the pharmacolo-
gical viability of the racemic compound (10a), especially 
from a synthetic and cost-efficiency standpoint as both 
enantiomers being active negates the need for stereo-
selective synthesis or costly resolution. It must be men-
tioned that while racemate activity is supported by in 
vitro data and molecular dynamics-based interaction 
profiling, further studies are needed to rule out 
enantiomer specific differences in pharmacokinetics, 
toxicity, and side effects. Assuming no such differences 
emerge, the racemate remains a cost-effective option. 
Additionally, the ability to synthesize this scaffold from 
achiral precursors without stereoselective synthesis or 
resolution supports its scalability potential. 

Since the racemate of compound (10a) exhibited highly 
potent activity, it is quite likely that both enantiomers 
contribute to inhibition, which is consistent with the 
similar molecular dynamics-derived scores. Significant 
potential of the lead compound (10a) as racemate is 
confirmed through molecular dynamics simulations, as 
a scaffold for designing inhibitors that may also target 
other amidohydrolase enzymes, based on conserved 
binding site features that are observed in computational 
studies. The pharmacophore of compound (10a) exhibi-
ted superior binding affinity within the urease active 
site comprising of residues such as CME592 and 
Arg439. The strong interactions, including Hydrogen-
bonding, π-π stacking, and hydrophobic contacts. 
Enzymes within the amidohydrolase family, such as 
arginase, carbonic anhydrase, and other metal-depen-
dent hydrolases, share same pockets with metal 
coordination centers and substrate-binding residues, 
positioning (10a) and its derivatives as promising can-
didates for broader amidohydrolase inhibition before 
further experimental validation. A deeper dynamic ana-
lysis is performed on two enantiomers of (10a), 
designated as 10a(R) and 10a(S) revealed that both 10a

(R) and 10a(S) exhibited comparable interaction 
stability and strength, indicating that the racemic mix-
ture of compound (10a) is itself highly active and does 
not require chiral resolution, making the compound 
more cost friendly and synthetically efficient scaffold. 
Furthermore, the insights gained from structure-activity 
relationship analyses revealed the important role of 
specific functional groups such as cyclic alkyl groups in 
enhancing bioactivity. These groups significantly 

contribute to hydrophobic and π-stacking interactions 
while optimized hydrogen-bond donors/acceptors fur-
ther stabilize the ligand-enzyme complexes. The supe-
rior binding affinity and IC50 value of (10a) compared to 
thiourea strongly suggest that its pharmacophore could 
inhibit other enzymes with active sites resembling the 
CME592-Arg439 pocket in urease. This highlights the 
potential for developing derivatives that target enzy-
mes implicated in metabolic, inflammatory, and micro-
bial pathways.  

Beyond biological activity and interaction rankings, 
translational relevance must also consider scaffold 
economy. While compound (10a) is more synthetically 
complex than thiourea, its high potency compared to 
thiourea, enhanced ligand-protein interaction profile as 
shown through static docking and molecular dynamics, 
and its naturally abundant triglyceride origin collec-
tively support further studies and structural derivation.  

The study was limited to the in vitro urease inhibition 

assays and molecular dynamics based interaction ana-
lysis. Although IC₅₀ values were determined, kinetic 
characterization of inhibition mechanism e.g. via Line-
weaver–Burk or Michaelis–Menten plots, longer dura-
tion molecular dynamics simulations, and in vivo 

analyses were not included within the present scope. 
The findings represent an initial experimental and 
computational validation of the racemic triglyceride 
scaffold as a urease inhibitor.  

 

Conclusion 

Facile synthesis of novel benzoic acid triglycerides gave 
lead compound (10a) that showed potent urease 
inhibition surpassing thiourea. Advanced molecular 
dynamics analyses based scorings revealed conserved 
catalytic pocket interactions and comparable activity of 
both 10a(R) and 10a(S) enantiomers, eliminating the 
need for chiral resolution. These findings establish the 
racemic scaffold as synthetically feasible, experimen-
tally and computationally validated amidohydrolase 
inhibitor scaffold, providing a foundation for future 
translational studies.   
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