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6-Formylindolo[3,2-b]carbazole promotes prolifera-
tion of adipose-derived mesenchymal stem cells via 
activation of the Ahr–IL-6 signaling axis 

 

Dear Editor, 

The tryptophan photoproduct 6-formylindolo[3,2-b]car-
bazole (FICZ) is a high-affinity endogenous ligand of 
the aryl hydrocarbon receptor (Ahr). Ahr has emerged 
as a promising target in stem cell research — including 
both mesenchymal stem/stromal cells (MSCs) and 
hematopoietic stem cells (HSCs) — due to its critical 
roles in regulating self-renewal, proliferation, differen-
tiation, and immunomodulation, mediated through the 
regulation of metabolism-related enzymes (e.g., Cyp1a1, 
Cyp1b1) and cytokines (e.g., TGF-β, IL-6) (Yin et al., 

2016; Seo et al., 2025). However, the contribution of the 
FICZ–Ahr–IL-6 network to MSC proliferation re-mains 
poorly understood.  

This study investigates the effect of FICZ on the proli-
feration of adipose-derived MSCs (AD-MSCs) cultured 
in Dulbecco's Modified Eagle Medium (DMEM) supple-
mented with 10%fetal bovine serum, 100 IU/mL peni-
cillin, 100 μg/mL streptomycin, 0.25 μg/mL amphoteri-
cin B, 1 ng/mL basic fibroblast growth factor, and 1 ng/
mL epidermal growth factor. We compare the fold-
change in proliferation and expression of related genes 
— including Ahr, Cyp1a1, Cyp1b1, and Il-6 — in AD-

MSCs treated with or without FICZ across different cell 
passages. 

Adipose tissues were obtained from healthy female 
donors (aged 25–30 years) at Hanoi Obstetrics and 
Gynecology Hospital. AD-MSCs were isolated as des-
cribed elsewhere (Kim et al., 2013). The concentration of 
FICZ used (100 nM) was selected based on established 
protocols from previous reports (Huang et al., 2022; 
Vrzal et al., 2023). AD-MSCs at passages 1, 2, and 3 (P1, 
P2, P3) were seeded at a density of 5 × 10⁴ cells/well in 
24-well plates and cultured in DMEM supplemented 
with 10%fetal bovine serum, with or without 100 nM 
FICZ.  

Morphological evaluation was performed on day 1, 3, 5, 
and 7 under an inverted phase-contrast microscope. 
Representative images from P2 cells (Figure 1, upper 
row) revealed no visible alterations in fibroblast-like 
morphology between treated and untreated groups. To 
assess multipotency, AD-MSCs at P2 were cultured for 

21 days in StemMACS differentiation media: AdipoDiff 
(1 × 10⁵ cells/well in 12-well plates), OsteoDiff (5 × 10⁴ 
cells/well in 12-well plates), and ChondroDiff (2.5 × 10⁵ 
cells/tube in 15-mL conical tubes), with or without 
FICZ. Adipogenic, osteogenic, and chondrogenic differ-
entiation was confirmed by oil red O, alizarin red, and 
alcian blue staining, respectively.  

FICZ-treated cells maintained their differentiation capa-
city, evidenced by the accumulation of lipid droplets, 
calcium deposits, and glycosaminoglycans (Figure 1, 
lower row). Flow cytometry (MACSQuant® VYB, Mil-
tenyi Biotec, Germany) analysis further confirmed that 
AD-MSCs retained their characteristic surface marker 
expression following FICZ treatment, including high 
levels of CD90, CD73, and CD105, and a lack of HLA-
DR expression (Table I), indicating preserved immuno-
phenotypic identity. There were no statistically signifi-
cant differences in the expression of surface markers 
between untreated and FICZ-treated cells.  

Specifically, CD90 expression remained high (99.5% ± 
0.6 in untreated vs. 99.0% ± 0.5 in treated cells; p>0.05), 
as did CD73 (99.7% ± 0.3 vs. 99.5% ± 0.4; p>0.05) and 
CD105 (95.5% ± 0.5 vs. 95.1% ± 0.5; p>0.05). Both groups 
showed negligible expression of the hematopoietic mar-
ker HLA-DR (0.01% ± 0.01 vs. 0.02% ± 0.01; p>0.05). 
These findings indicate that FICZ treatment does not 
alter the characteristic surface marker expression of AD
-MSCs. Next, to evaluate proliferation, AD-MSCs were 
harvested at P1, P2, and P3, and viable cells were coun-
ted by using the trypan blue exclusion method with a 
hemocytometer. FICZ promoted the proliferation rate 
of AD-MSCs, with fold changes of 1.1 ± 0.0, 1.1 ± 0.0, 
and 1.2 ± 0.0 at P1, P2, and P3, respectively, compared 
to untreated controls (p<0.05) (Figure 2). These results 
suggest that FICZ significantly promotes the prolifera-
tion of AD-MSCs without compromising their pheno-
type.  

It has been reported that Ahr plays a role in stem cell 
proliferation in a ligand- and context-dependent man-
ner (Larigot et al., 2018). Pharmacologically, FICZ is 
recognized as a potent, transient agonist of Ahr. To 
investigate the effect of FICZ on Ahr signaling and 
downstream targets, the expression of Ahr, Cyp1a1, and 
Cyp1b1 was evaluated in AD-MSCs. Passage 2 AD-

MSCs were treated with 10–100 nM FICZ and harvested 
at 8, 16, 24, and 48 hours for qRT-PCR analysis. At 
100 nM, FICZ induced peak gene expression at 24 

A Journal of the Bangladesh Pharmacological Society (BDPS) Bangladesh J Pharmacol 2025; 20: 169-172 
Journal homepage: www.banglajol.info; www.bdpsjournal.org 
Abstracted/indexed in Academic Search Complete, Agroforestry Abstracts, Asia Journals Online, Bangladesh Journals Online, Biological Abstracts, 
BIOSIS Previews, CAB Abstracts, Current Abstracts, Directory of Open Access Journals, EMBASE/Excerpta Medica, Global Health, Google Scholar, 
HINARI (WHO), International Pharmaceutical Abstracts, Open J-gate, Science Citation Index Expanded, SCOPUS and Social Sciences Citation Index  
ISSN: 1991-0088; DOI: 10.3329/bjp.v20i4.83467 

Letter to the Editor 

This work is licensed under a Creative Commons Attribution 4.0 International License. You are free to copy, distribute and perform the work. 
You must attribute the work in the manner specified by the author or licensor 



 

hours, with Ahr upregulated ~3.8-fold (Figure 3A), 
Cyp1a1 ~7.1-fold (Figure 3B), and Cyp1b1 ~9.6-fold 

(Figure 3C), compared to untreated controls. Given the 
known role of IL-6 in promoting mesenchymal stromal 
cell proliferation (Dorronsoro et al., 2020), Il-6 gene 

expression was also assessed. FICZ treatment induced a 
~3.2-fold increase in Il-6 expression at 24 hours 
(Figure 3D), coinciding with the transcriptional peaks of 
Ahr and its downstream genes. This finding supports a 
potential link between Ahr activation and IL-6 
upregulation in AD-MSCs. Interestingly, we observed 

significantly higher Ahr expression in AD-MSCs cultur-

ed in StemMACS MSC expansion medium compared to 
those in standard DMEM (unpublished data), sugges-
ting the presence of an Ahr ligand on the proprietary 
formulation. Further studies are required to identify the 
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Figure 1: Morphological observation and characterization of AD-MSCs cultured with or without FICZ (100 nM) at passage 2. Phase-
contrast microscopy images of AD-MSCs cultured without or with FICZ at day, 3, 5, and 7 (A, magnification 4x). Scale bar: 50 μm.  

Adipogenesis, osteogenesis, and chondrogenesis differentiation of AD-MSCs. Following adipogenesis, osteogenesis and chondrogenesis 

differentiation, lipid droplets, calcium deposits and glycosaminoglycans are revealed, respectively (B, magnification 20x)  
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Figure 2: Proliferation of AD-MSCs treated with or without 

FICZ. Fold change in cell proliferation of FICZ-treated cells 
compared to untreated cells at passage 1 (P1), P2, and P3. Data 
are mean ± SD from three independent experiments. ap<0.05 vs. 

untreated control 
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Table I 

%Expression of MSC surface markers and human 
leucocyte antigen-DR treated with FICZ   

CD marker untreated AD
-MSC (%) 

FICZ (100 nM)-
treated AD-
MSC (%) 

p val-
ue 

CD90 99.5 ± 0.6 99.0 ± 0.5 >0.05 

CD73 99.7 ± 0.3 99.5 ± 0.4 >0.05 

CD105 95.5 ± 0.5 95.1 ± 0.5 >0.05 

HLA-DR 0.0 ± 0.0 0.0 ± 0.0 >0.05 
Values are mean ± SD; n=3 animals in each group; treatment period was 7 
days 



 

specific factors responsible for Ahr activation in this me-

dium. A hypothetical model summarizing the proposed 
interplay between FICZ and Ahr-IL-6 signaling axis in 

promoting AD-MSC proliferation (Figure 4). 

Taken together, present findings suggest that FICZ acti-
vates the Ahr–IL-6 signaling axis to enhance the proli-

feration of AD-MSCs while preserving their multipo-
tency, including the ability to differentiate into adipo-
genic, osteogenic, and chondrogenic lineages. Impor-
tantly, Ahr is also expressed in epidermal keratinocytes, 

where it regulates cutaneous immune responses and 
homeostasis (Tsuji et al., 2012; Nguyen et al., 2013; 
Tanaka et al., 2018). Given that FICZ is a photoproduct 
of tryptophan generated upon UV exposure, its regula-

tory role in skin-resident cells—including keratinocy-
tes and hypodermal adipose-derived MSCs—warrants 
further investigation. Elucidating the role of the FICZ–
Ahr–IL-6 signaling axis in the skin micro-environment 

under physiological or light-induced conditions may 
provide novel insights into tissue regeneration and the 
treatment of inflammatory and degenerative skin disor-
ders.  
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Figure 3: Expression of Ahr, Cyp1a1, Cyp1b1, and Il-6 in FICZ-

treated and untreated AD-MSCs. Gene expression levels were 

measured by qPCR at 8, 16, 24, and 48 hours. Data are mean ± SD 

from three independent experiments. GAPDH housekeeping genes 

were used for normalization. ap<0.01, bp<0.005 vs. untreated control 

Figure 4: Hypothetical model illustrating the potential role of 
FICZ and Ahr-IL-6 signaling axis in promoting AD-MSC prolif-
eration while preserving stemness and differentiation potential. 
FICZ formed by the action of light on tryptophan also known 
as an endogenous ligand of Ahr can activate Ahr signaling in 
AD-MSCs and lead to the upregulation of downstream target 
genes such as Cyp1a1, Cyp1b1, and Il-6 that may contribute to the 

maintenance of AD-MSC stemness and differentiation potential, 

while supporting their proliferation capacity. 
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