
Introduction 

Pan-cancer study can uncover most of cell- and tissue-
specific genomic loci and regions with underlying 
biological functions (Kristensen et al., 2014; Leiserson et 
al., 2015; The Cancer Genome Atlas Research Network 
et al., 2013; Witte et al., 2014). Meanwhile, it provides 
meaningful insights from the genome-wide interro-
gation of cross-cell analysis and annotation. 

While till now, to biomedical researchers and clinicians, 
there is no systematic reference source of functional 
association between DNA methylation and transcrip-
tional regulation for wet-lab experiment design and 
post-experiment validation. Thus, this is an imperative 
for most biologists and biomedical researchers to 

improve their research outcomes and efficiency (Bock 
and Lengauer, 2008; Roadmap Epigenomics Consor-
tium et al., 2015). 

Here, we utilized our online curated reference source 
for DNA Methylation Annotation Knowledgebase 
(DMAK) and implemented the cross-cell analysis in pan
-cancer study. The knowledgebase provides multiple
read-to-use analysis results and annotation information
for the pan-cancer interrogation and cross-validation.

We deposited the curated information knowledgebase 
and related analysis results on GitHub for direct 
download and usage for free. Proper citation is 
suggested for any usage, possible reanalysis or 
refinement. 
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Abstract
Pan-cancer study can uncover cell- and tissue-specific genomic loci and 
regions with underlying biological functions, as one of fundamental 
procedures toward precision medicine. We utilized the online curated 
resource of DNA methylation annotation knowledgebase, to implement the 
cross-cell interrogation of pan-cancer study of breast cancer. The study 
revealed genome-wide differentially-methylated loci and regions by the 
reduced representation bisulfite sequencing profiling. The knowledgebase 
contains three level of curated information across multiple cancer and normal 
cells from the ENCODE Consortium. The reference base covers all identified 
differentially-methylation CpG sites and regions of interest, further annotated 
gene information, together with tumor suppressor gene and methylation 
level. Lastly, it includes the inferred functional association network and 
related Gene Ontology analysis results based on all the tumor suppressor 
genes identified from the differentially-methylated regions of interest. Our 
knowledgebase and analysis results provide a thorough reference source for 
biomedical researchers and clinicians. The cross-cell analysis results are 
deposited at: http://github.com/gladex/DMAK. 
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Structure and Purpose of DMAK 

DMAK contains three levels of curated information 
across multiple cell types from ENCODE Consortium 
portal (de Souza, 2012; Pennisi, 2012; Tang and Wang, 
2015; The ENCODE Project Consortium, 2012). The cell 
types investigated as below include breast cancer (T-
47D and MCF-7), cervical cancer (HeLa-S3), endo-
metrial cancer (ECC-1), blood cancer (GM12878, 
GM12891, GM12892, HL-60 and K562), brain cancer (SK
-N-MC, SK-N-SH, SK-N-SH_RA, PFSK-1 and U87), 
liver cancer (HepG2), colon cancer (HCT-116), pancreas 
cancer (PANC-1), lung cancer (A549), and human 
embryonic stem cell (H1-hESC). 

As depicted in Figure 1, the first level of DMAK was the 
curation of raw data sources from ENCODE Consor-
tium portal; for the study case in our work, we 
emphasized on cross-cell DNA methylation profiling 
information for detecting differentially-methylated fea-
tures and patterns within breast cancer T-47D cell type. 

This level content includes the summary for the 
analysis procedure and fundamental functions as 
discussed in the following sections. 

The second level mainly focuses on integrative analysis 
on the curated DNA methylation data in RRBS format
(Blattler et al., 2014; Ziller et al., 2013), we implemented 
function annotation for methylated CpG sites, identi-
fied differentially-methylated regions (DMR), and 
classified the hyper- and hypo-methylated regions or 
differential DMR candidates (Kemp Christopher et al., 

2014). The detailed analysis procedure and results are 
given in the following section. 

The third level analysis mainly includes the visualiza-
tion and function analysis for the annotated results, 
which include the functional association network for 
tumor suppressor genes identified from the hyper- or 
hypo-DMRs detected from the above analysis. 

We curated information and constructed the compre-
hensive knowledgebase using data sources mainly from 
ENCODE Consortium portal, together with other 
commonly-used tools, and the self-compiled scripts and 
programs. 

 

Annotation and Analysis Procedure in 
DMAK 

This section mainly discusses the functions and analysis 
procedure for DMAK, which covers fundamental 
functions of DMAK reference source, listed as, 

1) Statistical information detected for sequencing read 
coverage, number of Cs and Ts of for the 688,445 CpG 
sites across all cancer and normal cell lines listed 
above. For consistence, all DNA methylation data sets 
from ENCODE Consortium are based on the RRBS 
platform. The output format is given Figure 2. 

2) Analysis and annotation results for the methylated 
CpG sites (mCpG), which provide the methylation 
percentage value for all mCpG sites across the 
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Figure 1: Schematic illustration for the DMAK structure. The first level contains ENCODE data preprocess (namely, cell curation 
and data format process); the second level includes integrative analysis on the ENCODE data, namely DNA methylation CpGs 
annotation, identification of differentially-methylated CpGs and regions; the third level covers result visualization and further-
multi-scale interrogation of biological functions  



 

mentioned cell lines. The higher percentage value 
indicates the higher methylation status, and vice 
versa (Figure 3). 

3) Analysis and annotation results for the significant 
differentially-methylated CpG sites (SDMC) with 
reference to one cell type, here we selected T-47D as 
the study case. The results are further filtered based 
on the lifted methylation difference threshold (at least 
25% methylation difference for the paired groups). 
And the SDMC list contains 106,252 DMCs (Akalin et 
al., 2012a; Akalin et al., 2012b), together the related 
statistical p-value and adjusted q-value are also 
provided in Figure 4. 

4) Statistical analysis and annotation results for the 
differentially-methylated regions (DMR) with 
reference to one cell type, for consistence we selected 
T-47D as the case. We identified 16,277 DMR 
candidates from all the DMCs, with the adjusted q-

value ≤0.01, CpG base methylation difference cut off, 
25, and DMR mean methylation difference cut off, 20. 
Within those candidates, 8,936 entries present hyper-
methylated and 7,341 with hypo-methylated status. 
With the lifted thresholds, namely adjusted q-value 
≤0.001, differentially-methylated CpG base count ≥5, 
we further detected 7,537 significant DMRs (Sig-
DMRs), where 3,512 entries are significantly 
hypermethylated-DMRs (Sig-Hyper-DMRs), and 
4,025 significantly hypomethylated-DMRs (Sig-Hypo-
DMRs). The output format is shown in Figure 5. 

5) Statistical analysis and annotation results for the 
significantly hypermethylated-DMRs (Sig-Hyper-
DMRs) with reference to T-47D cell type as shown in 
the output format (Figure 6). 

6) Statistical analysis and annotation results for the 
significantly hypomethylated-DMRs (Sig-Hypo-
DMRs) with reference to T-47D cell type (Figure 7).  

Figure 2: Schematic illustration of statistical information detected from RRBS sequencing read coverage, number of Cs and Ts  

Figure 3: Schematic illustration of methylated CpG sites across all listed cell types. The methylation value is of percentage format, 
annotated with purple bars for each cell line  

Figure 4: Schematic illustration of significantly DMC (SDMC). The methylation difference is annotated with blue bars for each 
CpG site in T-47D cell line  

Figure 5: Schematic illustration for the identified DMRs with reference to T-47D cell type. The table provides the width, mean 
methylation difference, the corresponding p-value and adjusted q-value for each DMR entry. The mean methylation difference is 
annotated with green or red bars for each DMR  
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7) Statistical analysis and annotation results for the 
identified genes from all DMRs (hyper-DMRs and 
hypo-DMRs) with reference to T-47D cell type 
(Figure 8). 

 

Visualization and Function Analysis for the 
Annotation Results 

This section discusses the visualization and function 
analysis for the annotated results. Together we seek to 
detect whether there exists any functional association 
(Szklarczyk et al., 2015) between those identified genes 
from hyper-DMRs and hypo-DMRs, which can explain 
the differential expression between those genes 
qualitatively, especially for the genes belonging to 
tumor suppressor genes (TSG) (Bedi et al., 2014; Blattler 
et al., 2014; Zhao et al., 2013).  

Thus we annotated the genes identified from DMRs 
with TSG information, filtered out those from unknown 
sources, and constructed the TSG functional association 
networks for hyper-DMR and hypo-DMR, respectively.  

For illustration and space limitation, Figure 8 depicts 
the 20-TSG functional association structures for hyper- 

and hypo-DMRs, respectively. For validating the high 
fidelity of the analysis results, those 20 TSGs are 
randomly selected from the TSG list for each case. 

And interestingly, we found most of those TSG nodes 
are functionally associated to form clusters. In hyper-
DMR case, Figure 9A, only 4 out of 20 TSGs are 
dissociated from the TSG cluster; for hypo-DMR case, 
Figure 9B, it is comparatively loosely-connected and 10 
out of 20 TSGs are not linked to the TSG cluster. 

The complete TSG functional association network 
structures for hyper-DMR and hypo-DMR are provided 
in DMAK package deposited at GitHub. The TSGs in 
those structures are highly physically connected and 
functional associated in DMRs for our T-47D breast 
cancer case. 

Figure 10 depicts the Gene Ontology (Sherman et al., 
2007)analysis results for the two functional protein 
association network inferred for the TSGs. The upper 
(A) is for the hyper-DMRs, and the corresponding GO 
terms clearly prove such processes as transcription 
regulation, differentiation, mutation, activator, pathway 
in cancer and tumor suppressor, which are closed 
related to the hypermethylation outcomes of tumor 
suppressor genes. 

Figure 6: Schematic illustration for the identified hyper-DMR with reference to T-47D cell type. The mean methylation difference 
is annotated with red bars for each DMR  

Figure 7: Schematic illustration for the identified hypo-DMR with reference to T-47D cell type. The mean methylation difference is 
annotated with red bars for each DMR  

Figure 8: Schematic illustration for the identified gene information (SYMBOL and ENTREZ ID), log2 fold change, methylation 
percentage, tumor suppressor gene category (TRUE/FALSE), location (Promoter, CDS, Gene, 5’UTR, 3’UTR and Intron) and relat-
ed methylation level (HYPER/HYPO) from DMRs with reference to T-47D cell type. The log2 fold change and methylation per-
centage is annotated with red bars for each annotated gene  
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And the bottom (B) for the hypo-DMRs, and its GO 
terms present positive regulation of transcription and 
gene expression, differentiation, which to a certain 
extent confirm its connectivity to the hypomethylation 
outcomes of TSGs. 

 

Conclusion 

Our cross-cell DNA methylation annotation and 
analysis provide the systematic information 
knowledgebase for pan-cancer study. It contains 
curated reference results for ready-to-use information 
for sharing and rapid reanalysis.  

The first level of the knowledgebase is about raw data 
preprocess, we collected the data from the ENCODE 
Consortium portal. The second level is for annotation 
and function analysis; in this study case, we focused on 
DNA methylation in breast cancer cell, T-47D, 
annotated and identified the differentially-methylated 
sites and regions, and further identified the underlying 
tumor suppressor genes within the regions. The third 
level is for visualization and validation procedures. We 
further constructed the functional association network 
for the identified tumor suppressor genes, and further 
annotated the networks with Gene Ontology 
information, which can provide statistically significant 
evidences for the hyper-methylated and hypo-
methylated processes in the breast cancer context. 

Our work provides a versatile and comprehensive 
platform for all biomedical researchers, especially for 
the genome-wide biomedical analysts, to interrogate 
and validate their hypothesis in an efficient and 
uniform way. 

In coming days, further annotation and analysis results 
concerning pan-cancer analysis will be updated into the 
knowledgebase, especially we seek to provide an 
interactive environment for biomedical researchers to 
fetch and utilize this knowledgebase. 
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