
 

Introduction 

Cadmium is an extremely toxic environmental pollu-
tant commonly found in industrial workplaces, released 
from metal refining, smelting, and burning of fossil 
fuels and municipal wastes. Cadmium is toxic to many 
body organs including liver, kidney and brain (Lopez et 
al., 2006; Prabu et al., 2011; Oliveira et al., 2012; 
Napolitano et al., 2012; Coccini et al., 2013). Cadmium 
has high blood-brain barrier permeability and chronic 
exposure affects nervous system leading to memory 
deficits, olfactory dysfunction and hypernociception 
(Pihl and Parkes, 1977; Lukawski et al., 2005; Nishimura 
et al., 2006; Wright et al., 2006). Increasing evidences 
indicate cadmium in the etiology of many neurode-
generative diseases (Okuda et al., 1997; Panayi et al., 
2002; Jiang et al., 2007; Chen et al., 2011c). 

Cadmium induced oxidative stress interferes with 
proteins, lipids and DNA and alters their functions 
(Stohs and Bagchi, 1995; Figueiredo-Pereira et al., 1998; 
Green and Peers, 2002; Kim et al., 2005). Cadmium 
interacts with the functions of many Ca2+ dependent 
enzymes as protein kinase C (PKC) and mitogen-activa-
ted protein kinase (MAPK) (Lohmann and Beyersmann, 
1993; Beyersmann and Hechtenberg, 1997; Misra et al., 
2002). Intracellular calcium homeostasis is pivotal in 
cellular function, survival and death (Clapham, 2007). 
Cadmium induced disruption in intracellular free 
calcium ([Ca2+]i) homeostasis leads to apoptosis 
(Lemarie et al., 2004; Liu and Templeton, 2008; Yang et 
al., 2008; Son et al., 2010; Xie et al., 2010).  

Ca2+ mediates numerous physiological responses of 
neurons (Cheng et al., 2003; Neher and Sakaba, 2008; 
Surmeier et al., 2010) and disruptions in Ca2+ levels 
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Abstract 
Cadmium, a toxic environmental contaminant, induces oxidative stress lead-
ing to various neurodegenerative disorders, where it interferes with homeos-
tasis of intracellular free calcium ([Ca2+]i), leading to cellular damage and 
apoptosis. We investigated whether resveratrol, a plant-derived antioxidant 
could offer protection against cadmium-induced neuroapoptosis. Primary 
cortical neurons were exposed to cadmium (10 or 20 µM) with/without prior 
exposure to resveratrol (5, 10 or 20 µM) for 12 hours and unexposed cells 
served as control. Resveratrol caused marked reduction in cadmium-induced 
neuronal apoptosis and down-regulated caspase-3 expressions. Cadmium-
induced marked elevations in reactive oxygen species, and ([Ca2+]i) levels 
were potentially reduced by resveratrol. Resveratrol effectively regulated the 
alterations observed in the activation levels of mitogen-activated protein 
kinases (MAPKs) and proteins of mammalian target of rapamycin (mTOR) 
pathways. Thus, resveratrol effectively protected the cortical neurons exposed 
to cadmium by modulating the ([Ca2+]i) levels and regulating the MAPK/
mTOR pathways. 
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disturbs many signalling cascades (Liu and Templeton, 
2008). Ca2+ levels are critical for activation of mamma-
lian target of rapamycin (mTOR) (Gulati et al., 2008). 
mTOR is important for development and survival of 
neurons. Altered mTOR activity has been observed in 
neurodegenerative disorders and brain tumors (Ravi-
kumar et al., 2004; Swiech et al., 2008). Chen et al. (2008; 
2011b, c) demonstrated that MAPK and mTOR path-
ways are involved in cadmium induced neuronal apop-
tosis. Thus, targeting these pathways could be a 
potential strategy in therapy of neurodegenerative 
disorders and in cadmium-induced toxicities.  

Resveratrol (3,5,4'-trihydroxystilbene), a polyphenolic 
phytoalexin is found in grapes, berries and also in 
many other plants (Sovak, 2001). Numerous pharmaco-
logical properties have been attributed to resveratrol 
including antioxidant, cardioprotective, and antiproli-
ferative activities (Fremont, 2000; Fulda, 2010; Lin et al., 
2013; Cullberg et al 2014; Lephart et al 2014). With this 
background, we investigated the effect of resveratrol in 
cadmium-induced neuroapoptosis. 

 

Materials and Methods 

Reagents and chemicals 

Dulbecco’s modified eagle’s medium (DMEM)-F12 
(1:1), 2-aminoethoxydiphenyl borate (2-APB), 2’,7’-
dichloro-dihydrofluorescein diacetate (H2-DCF-DA), 
trypsin, penicillin/streptomycin, BAPTA (1,2-bis(o-
aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) and 
Poly-D-lysine (PDL), resveratrol were obtained from 
Sigma-Aldrich (USA). Cadmium chloride (Sigma, USA) 
was dissolved in sterile double distilled water and the 
stock solutions (0-20 mM) were prepared. For western 
blot analysis, following antibodies were used: phospho-
p38 (Thr180/Tyr182), phospho-Erk1/2 (Thr202/ 
Tyr204), phospho-mTOR (Ser2448), mTOR, phospho-
Akt (Ser473), phospho-S6K1 (Thr389), 4E-BP1, phospho-
S6(Ser235/236), S6, caspase-3, cleaved caspase-3 
(Asp175), PTEN (Cell Signaling Technology, USA), 
JNK, phospho-JNK (Thr183/Tyr185), c-Jun, phospho-c-
Jun (Ser63), Erk1/2, p38, Akt, S6K1 (Santa Cruz 
Biotechnology, USA), β-tubulin (Sigma-Aldrich, USA), 
goat anti-rabbit IgG horseradish peroxidase (HRP), goat 
anti-mouse IgG-HRP, and rabbit anti-goat IgG-HRP 
(Pierce, Rockford, IL, USA). NEUROBASALTM medium, 
B27 supplement and fluo-4/AM were procured from 
Invitrogen (USA). The other chemicals that were used 
in this study were obtained from Sigma Aldrich (USA), 
unless otherwise mentioned. 

Cell isolation and culture 

Primary rat cerebral cortical neurons were cultured 
from fetal Sprague-Dawley rats (18-19 days of 
gestation) as described formerly by Yan et al. (2012). 
The isolated cells were seeded at a density of 2 x 104 

cells/well in 96-well plates which were coated with 100 
mg/L poly-L-lysine in NEUROBASALTM medium 
supplemented with L-glutamine (1 mM), penicillin (100 
U/mL), streptomycin (100 U/mL) and B27 supplement 
at 2% and were cultured in a humid incubator at 37°C 
in 5% CO2. The cells were used for analysis after 7 days 
of culture. Fetal Sprague-Dawley rats were obtained 
from Laboratory Animal Center in Yangzhou Univer-
sity (Yangzhou, China). This research study was perfor-
med with strict adherence to the recommendations 
specified in the Guide for the Care and Use of Labora-
tory Animals of the National Research Council and was 
approved by the Institutional ethical committee. 

Assessment of cell viability and morphological changes 

DAPI staining for morphology analysis 

The neuronal cells were seeded at a density of 5 × 105 
cells/well in a 6-well plate comprising a PDL coated 
glass coverslip per well and cells were cultured for 24 
hours, following which cells were then treated with 
various concentrations of resveratrol (5, 10 and 20 μM) 
for 12 hours. After treatment with resveratrol, cells 
were incubated with/without cadmium (10 and 20 μM) 
for 12 hours and observed for morphological changes 
(fragmented and condensed nuclei) using DAPI 
staining as described by Chen et al. (2008) and cells 
were observed with fluorescence microscope (Nikon 
80i, Japan)  

Cell viability assay 

Primary neurons exposed to resveratrol and/or 
cadmium was washed twice with phosphate buffered 
saline and were analysed for cell viability. Apoptosis 
was determined by LIVE/DEAD viability (LIVE/
DEAD cell viability kit, Invitrogen) assay. The assay 
determines plasma membrane integrity to assess the 
viability of cells. Treated or untreated cells were stained 
with 5 µmol/L ethidium homodimer and 5 µmol/L 
calcein-AM and incubated at 37°C for 30 min following 
which the cells were analyzed for viability under a 
Nikon labophot-2 fluorescence microscope. The assay 
relies on the intracellular esterase activity within living 
cells, through which the calcein-AM, a cell permeable 
fluorogenic esterase substrate, hydrolyzes to the green 
fluorescent product calcein. Live cells will retain calcein
-AM, and produce a green fluorescence. Further, 
ethidium homodimer enters damaged membranes of 
the dead cells and binds to nucleic acids thereby 
producing a red fluorescence.  

Analysis of intracellular free Ca2+concentration ([Ca2+]i) 

For [Ca2+]i detection, cortical neurons were cultured in 6
-well plates and incubated with BAPTA-AM (10 mM), 
or 2-APB (50 mM) for 30 min and cells were subjected 
to various concentrations of resveratrol and/or Cd for 
another 12 hours. The harvested cells were incubated 
with Fluo-4/AM (5 mmol/L final concentration) for 30 
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min at 37°C in dark and were washed with PBS, 
analyzed for fluorescence using fluo-4/AM as an 
intracellular free Ca2+ fluorescent probe to analyse 
[Ca2+]i in cadmium exposed cerebral cortical neurons. 
[Ca2+]i levels signified by intensity of fluorescence was 
recorded (494 nm and 516 nm) and data was analyzed 
by Cell Quest program (Becton Dickinson). 

Assessment of ROS generation 

Generation of intracellular ROS was measured using 
2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining 
by flow cytometry where DCFH-DA is an non-
fluorescent compound which gets converted to DCF 
enzymatically in presence of ROS. After exposure of 
BAPTA-AM (10 mM) for 30 min, the cells were treated 
with resveratrol followed by cadmium (10 and 20 μM) 
for 12 hours. Cells were further incubated with DCFH-
DA (10 µM) for 30 min at 37°C in dark and were 
washed twice with PBS and intensity of fluorescence 
was measured (Lu et al., 2004). 

Western blot analysis 

After treatment with cadmium and/or resveratrol, the 
cells were treated and washed with cold PBS and prior 
to cadmium or resveratrol exposure, they were 
incubated with/without BAPTA-AM as stated before. 
The cells were lysed in RIPA buffer (50 mM tris, pH 7.2; 
1 mM Na3VO4; 1% sodium deoxycholate; 0.1% SDS; 1% 
Triton-X 100; 150 mM NaCl; 10 mM NaF; 1:1000 
protease inhibitor cocktail) and the lysate was further 
sonicated for 10 sec; centrifuged at 14,000 rpm for 10 
min at 4°C. Using bovine serum albumin as standard, 
the protein concentration was determined where equi-
valent amounts of proteins were separated on SDS-
polyacrylamide gel (7.5–12%) and blotted to polyvinyl-
idene difluoride membranes (Millipore, USA). Mem-
branes were incubated with blocking solution (phos-
phate buffered saline  containing 0.05% Tween 20 and 
5% nonfat dry milk) to block non-specific binding and 
were incubated with primary antibodies followed by 
equivalent horseradish peroxidise conjugated secon-
dary antibodies. Positive bands were visualized using 
enhanced chemiluminescence solution (GE Healthcare). 
The band signals of other proteins were normalized to 
those of β-actin using anti-β-actin (1:2000 dilution) (Cell 
Signaling Technology, USA). 

Statistical analysis 

The results were represented as mean ± SD. Values at 
p<0.05 are considered significant as determined by 
ANOVA (one way analysis of variance) and analyses 
were performed using SPSS statistical package (version 
17.0). 

 

Results 

In the control group, majority of cerebral cortical 

neurons had homogeneously stained nuclei, and the 
chromatins of normal nuclei were unaltered and spread 
equally throughout the entire nucleus (Figure 1A). 
However, in cells that were exposed to cadmium at 10 
and 20 µmol/L for 12 hours, prominent nuclear 
morphological changes archetypal to apoptosis were 
observed. The cells presented condensed nuclear 
chromatin and fragmented nuclei. Nevertheless, in cells 
that were pre-treated with resveratrol, the intensity of 
morphological changes were considerably less. 

Following cadmium exposure for 12 hours, 
neurotoxicity was observed as a striking decline in cell 
viability percentage with 20 µM cadmium presenting 
neurotoxic effects greater than 10 µM (Figure 1B). 
Resveratrol at various concentrations (5, 10 and 20 μM) 
resulted in a significant (p<0.05) improvement in cell 
viability percentage. The viable neuron counts increas-
ed with increasing concentrations of resveratrol. The 20 
µM concentration caused a marked raise in viability 
when compared to lower doses (5 and 10 µM).  
Expression of activated caspase-3 was comparatively 
less following exposure to 10 µM cadmium. Incubation 
with resveratrol for 24 hours markedly reduced the 
expression of cleaved caspase-3 in a dose-dependent 
manner that was in line with the results of the cell 
viability as in LIVE/DEAD assay and DAPI staining. 
Resveratrol at 20 µM was more effective in down-
regulating the expression of activated caspase-3. 

Studies have shown that cadmium disrupts [Ca2+]i 
homeostasis leading to apoptosis and to determine 
[Ca2+]I levels following the treatment of cerebral cortical 
neurons with resveratrol and/or cadmium, the cells 
were stained with Fluo-4 AM, an calcium indicator dye. 
We found that the exposure to cadmium (10 and 20 
mM) resulted in an concentration-dependent increase of 
[Ca2+]i in cerebral cortical neurons (Figure 2). However, 
resveratrol caused a significant reduction in [Ca2+]i  
levels. 

Additionally, the combined effect of resveratrol and 
BAPTA-AM on cadmium-induced perturbation of 
[Ca2+]i homeostatsis was evaluated where the cells were 
pre-loaded with 10 mM BAPTA-AM for 30 min. BAPTA
-AM, an effective membrane permeable intracellular 
Ca2+ chelators gets trapped in the cells after cytoplasmic 
hydrolysis. As exemplified in Figure 2, chelating intra-
cellular Ca2+ with BAPTA-AM prevented the elevation 
of [Ca2+]i. Further on incubation of the neurons with 2-
APB, a ER calcium channel (inositol-1,4,5-trisphos-
phate receptor; IP3R) blocker, the elevated levels of 
[Ca2+]i induced by cadmium was found to be 
suppressed. However exposure to resveratrol without 
BAPTA-AM caused minor decrease in levels of [Ca2+]i. 
The combined exposure to BAPTA-AM and resveratrol 
was found to be more effective in suppressing the levels 
of raised intracellular calcium levels. Resveratrol at 20 
µM was more effective in reducing the levels of [Ca2+]i 
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(Figure 2). While APB reduced the discharge of calcium 
from ER, resveratrol also caused alterations against the 
cadmium-induced raise in [Ca2+]i along with APB. 
These observations suggest that resveratrol affects 
cadmium-induced raised levels of intracellular calcium.  

The cells that were treated with cadmium at 20 µM 
exhibited marked increase in the levels of ROS as 
compared to lower dose of 10 µM (Figure 3). Incubation 
with BAPTA-AM and/or resveratrol resulted in a multi

-fold decline in ROS level. Further resveratrol and 
cadmium exposure in the absence of BAPTA-AM also 
caused a significant decrease in ROS levels, with the 
higher dose (20 µM) of resveratrol exhibiting more 
potent effects than lower doses. Nevertheless, exposure 
to both BAPTA-AM and resveratrol presented sharp 
declines in ROS generation irrespective of concentration 
of resveratrol.  
Suppression of ROS in the combined treatment was in 
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Figure 1: Resveratrol inhibits cadmium induced neuroapoptosis 

Pre-treatment with resveratrol markedly reduction in morphological changes as seen by DAPI staining (A) and improved the viable cell percentage 

(B); Values are represented as mean ± SD; n=6; arepresents statistical significance at p<0.05 compared against control as determined by one-way 
ANOVA  



 

the order: BAPTA-AM and resveratrol (20 µM)> 
BAPTA-AM and resveratrol (10 µM)>BAPTA-AM and 
resveratrol (5 µM). The results suggest that effective 

decrease in ROS levels by resveratrol could be 
attributed to its antioxidant potency. BAPTA-AM also 
caused reduction in ROS level suggesting BAPTA-AM 
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Figure 2: Resveratrol inhibits Cd-induced alterations in intracellular free calcium levels 

Resveratrol with/without BAPTA-AM or AMP treatment caused significant reduction in [Ca2+]i levels; Values are represented as mean ± SD; n=6; 
arepresents statistical significance at p<0.05 compared against control as determined by one-way ANOVA  
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Figure 3: Resveratrol inhibits Cd-induced ROS generation 

Values are represented as mean ± SD; n=6; arepresents statistical significance at p<0.05 compared against control as determined by one-way ANOVA 
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Figure 5: Resveratrol regulates the expression of MAPK pathway proteins 
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blocked calcium levels that could have reduced the 
production of ROS. 

Effect of resveratrol on cadmium induced phosphory-
lation of Akt, S6K and 4E-BP1 was determined. Pre-
treatment with varying concentrations of resveratrol 
markedly inhibited cadmium induced phosphorylation 
of Akt, S6K and 4E-BP1 in the primary cortical neurons 
(Figure 4A, B). At 20 μM, resveratrol entirely blocked 
the phosphorylation. Furthermore, significant down-
regu-lation of PTEN (phosphatase and tensin homolog 
deleted on chromosome 10) was observed following 
induction of cadmium. Resveratrol caused dose-
dependent up-regulation of PTEN. The results suggest 
that resveratrol was able to effectively inactivate Akt/
mTOR proteins and increase PTEN expression.  

Cadmium-induced relative expressions of PTEN and 
Akt/mTOR pathway proteins under the influence of 
resveratrol without (a)/with BAPTA-AM (b). Resvera-
trol effectively modulates the expressions of the 
proteins. 

The effects of resveratrol on the expressions of the three 
main members of the MAPK family: c-Jun N-terminal 
kinase (JNK), extracellular signal- regulated kinase 
(ERK) and p38 MAPK were determined. Resveratrol 
was found to potentially block the phosphorylation of 
JNK, ERK1/2, and p38 in primary neurons (Figure 5). 
However, no observable change in the basal expression 
of JNK, Erk1/2 and p38 was found. Resveratrol 
inhibited cadmium-induced phosphorylation of JNK 
and phosphorylation of c-Jun as well; c-Jun is a specific 
substrate of JNK (Figure 5). The effects were however 
dose-dependent, with 5 µM of resveratrol exhibiting no 
obvious alterations in the expression patterns of c-Jun, 
JNK, ERK1/2 and p38. Maximum effects were exhibited 
by 20 µM resveratrol. The data thus suggest that 
resveratrol was able to potentially inhibit cadmium 
induced expressions of MAPK family proteins.  
Cadmium-induced alterations in the expression of 
MAPK pathway proteins were effectively modulated by 
resveratrol. The relative expressions of the proteins 
under the influence of resveratrol alone and with 
BAPTA-AM are shown in a and b respectively. 

 

Discussion 

Use of chelators for effective therapy of cadmium poi-
soning may not hold effective for long-term exposure 
and also due to the side-effects associated with 
chelating agents (Sinicropi et al., 2010). Recent studies 
have shown efficacy of plant-derived compounds in 
cadmium poisoning. Celastrol and Epigallocatechin 3-
gallate have been reported to possess potential 
neuroprotective effects against cadmium induced 
neurotoxicity (Abib et al., 2011; Chen e al., 2014). 

The exact mechanism through which cadmium induces 
neuronal apoptosis is yet to be resolved completely, 
while recent reports indicate the sustained activation of 
mitogen-activated protein kinases signalling pathways 
(Kim and Sharma, 2004; Kim et al., 2005) and mTOR 
networks (Chen et al., 2008; 2011) in cadmium induced 
neuroapoptosis. The present study was undertaken to 
evaluate whether resveratrol was able to effectively 
modulate cadmium induced alterations of MAPK and 
mTOR pathways.   

Resveratrol treatment caused effective reduction in the 
morphological alterations in cadmium induced primary 
cortical neurons. The intensity of fragmented nuclei 
significantly reduced in resveratrol pre-treatment. 
Studies have shown that cadmium may trigger cell 
death by caspase-dependent and/or independent apop-
totic mechanisms, depending on cell types (Coutant et 
al., 2006; Mao et al., 2007). Resveratrol was able to 
potentially improve the cell viability and markedly 
down-regulate cadmium induced robust up-regulation 
of caspase-3. 

Cadmium disrupts [Ca2+]i homeostasis, causing apop-
tosis in a variety of cells. In line with the previous 
reports (Biagioli et al., 2008; Wang et al., 2009; Xu et al., 
2011), in the present study cadmium exposure caused a 
striking increase in the [Ca2+]I levels. However, 
resveratrol caused a marked decrease in [Ca2+]i. The 
results were similar to the effects exerted by BAPTA-
AM, that was used as a standard to chelate intracellular 
calcium in order to demonstrate cadmium induced 
elevation in [Ca2+]i. Xie et al. (2010) has reported 
cadmium induced apoptosis as mediated by the release 
of Ca2+ from intracellular Ca2+ stores. Pre-treatment 
with 2-APB, an membrane-permeable inhibitor of IP3R 
(Ruiz et al., 2009), evidently reduced cadmium-induced 
elevation of [Ca2+]i suggesting that this elevation 
possibly involves intracellular release from Ca2+ stores. 
Resveratrol exposure has also caused an obvious 
decrease in levels of intracellular release of Ca2+, 
suggesting its effect against cadmium induced release 
of Ca2+. As shown by Misra et al. (2003) an increase in 
IP3, an ligand of IP3R following exposure to  cadmium 
suggests that cadmium could activate IP3R through 
increase of intracellular IP3 which then causes release of 
calcium from ER which is an major calcium storage 
compartment of the cell. Pre-treatment with an inhibitor 
of the calcium channel of ER (IP3R) suggests that the 
release of calcium from ER in stimulating apoptosis 
(Deniaud et al., 2008). The effect of resveratrol in 
reducing the levels of Ca2+ suggests that it contributes in 
further inhibiting the process of apoptosis by maintain-
ing the levels of Ca2+. Decrease in the Ca2+ contributed 
by resveratrol exposure is found to be in line with 
observations of the cell viability assay and DAPI 
staining.  

Cadmium induced neuronal toxicity is also due to 

 Bangladesh J Pharmacol 2015; 10: 366-376 373 



 

induction of ROS leading to oxidative stress (Lopez et 
al., 2006; Chen et al., 2008, 2011; Thevenod et al., 2009). 
Xu et al. (2011) has demonstrated that cadmium ele-
vated [Ca2+]i induces the ROS and obtained results of  
this studies also showed cadmium induced [Ca2+]i 
elevation resulting in the induction of ROS in cerebral 
cortical neurons after treatment with cadmium. 
Resveratrol and/or BAPTA-AM markedly attenuated 
cadmium induced ROS, suggesting calcium-related 
ROS production. Elevated [Ca2+]i and ROS could lead to 
apoptosis. By causing a marked decrease in the levels of 
[Ca2+]I and ROS generation, resveratrol significantly 
reduces neuronal apoptosis and offers protection 
against cadmium induced neurotoxicity.  

Mitogen-activated protein kinases (MAPKs) are impor-
tant signal transduction enzymes that are involved in 
many cellular processes including development, 
differentiation, proliferation and apoptosis (Hamanoue 
et al., 2007; Vacotto et al., 2008). Studies have demons-
trated that ERK, NK and p38 MAPK, play a critical role 
in cadmium induced apoptosis of many cell types 
including neuronal cells (Xu et al., 2011; Nemmiche et 
al., 2012). In the present study, cadmium exposure 
caused an increase in the phosphorylation levels of 
JNK, ERK1/2, c-Jun and p38. Further following 
cadmium exposure the increase in p-c-Jun levels 
correlated with c-Jun levels. Sustained activation of 
JNK, Erk1/2 and/or p38 is responsible for cadmium 
induced apoptosis in various cells, including neuronal 
cells (Chuang et al., 2000; Kim et al., 2005). Resveratrol 
significantly down-regulated the expression levels of 
the phosphorylated JNK, ERK1/2, C-Jun and p38. This 
down-regulation in the phosphorylation status of 
MAPK proteins is suggestive of the reversal of MAPK 
pathway to normal.  

mTOR has been widely recognized as a central 
controller of cell proliferation, growth and survival 
(Bjornsti and Houghton, 2004). Cadmium-induced 
inhibition of cell proliferation and cell viability has been 
reported (Lopez et al., 2003; Kim et al., 2005). Akt 
positively regulates mTOR, leading to increased 
phosphorylation of ribosomal p70 S6 kinase (S6K1) and 
eukaryotic initiation factor 4E binding protein 1 (4E-
BP1), the downstream effector molecules of mTOR 
(Bjornsti and Houghton, 2004). In the present study, 
cadmium exposure caused raised phosphorylation of 
mTOR and Akt. As reported by Bjornsti and Houghton 
(2004), cadmium-induced activation of mTOR caused 
consequent activation of S6K1 and 4E-BP1. Resveratrol 
induced significant down-regulation in the phopshory-
lation levels of Akt and mTOR, lead to subsequent 
decreases in p-4E-BP1 and pS6K1. Chen et al. (2011b) 
reported cadmium inactivation of PTEN resulting in 
activation of Akt/mTOR signalling and apoptosis of 
neuronal cells thus implying loss of PTEN function may 
promote development of neurodegenerative disorders. 
We also witnessed cadmium exposure resulting in 

considerable inactivation of PTEN and the same being 
significantly attenuated by resveratrol. Resveratrol 
exposure effectively improved PTEN expression and 
also regulated the Akt/mTOR pathway. 

The overall observations of the study indicates that 
cadmium-induced raised [Ca2+]i in neuronal cells 
subsequently induced ROS generation and activated 
MAPK/mTOR pathways that were potentially regula-
ted by resveratrol. The results suggest the efficacy of 
resveratrol in neuroprotection. These protective effects 
of resveratrol may possibly be attributed to its potent 
antioxidant capacity.  
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