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Introduction 

Endometrial cancer is one of the most prevailing 
gynecological malignancies with increasing incidence 
(Leslie et al., 2012) and with limited therapeutic options 
available for advanced and recurrent cancers.  

Dysregulation of the cell cycle is the most frequent 
alterations in tumor development (Collins et al., 1997; 
Hajduch et al., 1999; Buolamwini, 2000). Among the cell 
cycle checkpoints, the G2/M checkpoint maintains 
chromosomal integrity by allowing cells to repair the 
DNA damage prior to mitosis and thus a target for 
development and identification of novel effective drugs. 

DNA damage sensor, ataxia telangiectasia mutated 
(ATM) controls cell cycle arrest at G1 and G2 and 
blocks DNA synthesis that is in progress. The functions 
of ATM are mediated partly by checkpoint effector 

kinases, Chk1 and Chk2 (Zhou and Elledge, 2000; 
Kastan and Lim 2000; Abraham, 2001). ATM phospho-
rylates Chk2 on threonine 68 (Thr 68) and Chk1 on 
serine 317 and 345 (Ser 317 and Ser 345), causing their 
activation (Matsuoka et al., 1998; Melchionna et al., 
2000). In response to DNA damage and DNA repli-
cation stress, Chk1 and Chk2 phosphorylate Cdc25C 
phosphatase, an activator of cyclin dependent kinase, 
Cdc2 (Bulavin et al., 2003).  

Studies have reported the effect of various phyto-
chemicals on carcinogenesis. Resveratrol (Aggarwal et 
al., 2004; Tyagi et al., 2006) and jaceosidin caused G2/M 
cell cycle arrests (Lee et al., 2013). 

Fisetin, a flavonoid is commonly found in many fruits 
and vegetables as strawberries, apples and cucumbers 
(Kim et al., 2012). Recent investigations suggest that 
fisetin attenuated metastasis (Chou et al., 2013) and 
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Abstract 
Endometrial cancer is one of the most prevalent gynaecological malignancies 
where, currently available therapeutic options remain limited. Recently phyto
-chemicals are exploited for their efficiency in cancer therapy. The present 
study investigates the anti-proliferative effect of fisetin, a flavonoid on human 
endometrial cancer cells (KLE and Hec1 A). Fisetin (20-100 µM) effectively 
reduced the viability of Hec1 A and KLE cells and potentially altered the cell 
population at G2/M stage. Expression levels of the cell cycle proteins (cyclin 
B1, p-Cdc2, p-Cdc25C, p-Chk1, Chk2, p-ATM, cyclin B1, H2AX, p21 and p27) 
were analyzed. Fisetin suppressed cyclin B1 expression and caused inactiva-
tion of Cdc25C and Cdc2 by increasing their phosphorylation levels and fur-
ther activated ATM, Chk1 and Chk2. Increased levels of p21 and p27 were 
observed as well. These results suggest that fisetin induced G2/M cell cycle 
arrest via inactivating Cdc25c and Cdc2 through activation of ATM, Chk1 and 
Chk2.  
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exerted anti-proliferative effects on various cancer cells 
(Chen et al., 2002; Haddad et al., 2006). Mechanisms by 
which fisetin acts on cancer cells though not completely 
understood, studies have reported that it reduces the 
cyclin D1 and E levels, increases p53 expression and 
activates caspase-3 (Chen et al., 2002; Lee et al., 2002, 
2005; Lu et al., 2005; Haddad et al., 2006). This study is 
an attempt to explore the effect of fisetin on human 
endometrial cancer cells. 

 

Materials and Methods 

Antibodies and reagents 

Fisetin and propidium iodide was purchased from 
Sigma (St. Louis, MO, USA). Antibodies for cyclin B1, 
phospho-Cdc2 (Tyr 15), Cdc2, phospho-ATM, p21, p27, 
and β-actin antibodies were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Antibodies for 
phospho-Cdc25C (Ser 216), Cdc25C, phospho-H2AX 
(Ser 139), phospho- Chk1 and phospho-Chk2 were from 
Cell Signaling (Beverly, MA, USA). All other chemicals 
were obtained from Sigma (St. Louis, MO, USA) unless 
otherwise specified. 

Cell lines 

The endometrial cancer cell lines KLE and Hec1 A were 
obtained from American Type Culture Collection. Cells 
were cultured in DMEM media supple-mented with 5% 
fetal bovine serum (FBS), penicillin (100 µg/mL) and 
streptomycin sulfate (100 µg/mL). 

Cell viability assay 

Cytotoxicity was assessed using MTT assay. Briefly, the 
cells (5 x 105) were seeded in DMEM media (50 µL/
well) in a 96-well plate and incubated for 24 h, followed 
by treatment with various concentrations of fisetin (20 - 
100 µM). After incubation for 48 hours, 25 µL of MTT (5 
mg/mL stock solution) was added and the plates were 
further incubated for 4 hours. The blue colour formazan 
crystals formed after discarding the media, were 
dissolved in 50 µL DMSO. Optical density was 

measured at 540 nm using a spectrophotometer 
(SpectraMax, Molecular Devices, Sunnyvale, CA, USA). 

Cell cycle analysis 

Endometrial cells (Hec1 A and KLE) were treated with 
fisetin (20-100 µM). The cells were harvested following 
6 and 12 hours of incubation and washed twice with ice 
cold PBS. The cells were fixed and permeabilised with 
70% ice-cold ethanol at 4°C for 60 min. The cells were 
washed once with PBS and re-suspended in a staining 
solution containing propidium iodide (50 µL/mL) and 
RNase A (250 µg/mL). The cell suspensions were 
incubated for 30 min at room temperature followed by 
fluorescence-activated cell sor-ting (FACS) cater-plus 
flow cytometry (Becton Dickin-son Co., Germany) 
using 10,000 cells per treatment group. 

Western blot analysis 

Cells were washed with cold PBS and lysed using cell 
lysis buffer (25 mM Tris HCl pH 7.6, 150 mM NaCl, 1% 
NP-40, 1% sodium deoxycholate, 0.1% SDS) for 30 min 
on ice. Total protein content was determined using 
protein assay kit of Invitrogen™, Life technologies. 
Clear protein lysates (30 - 80 μg) were then fractionated 
by SDS-PAGE (8-12%) and electro-transferred to 
nitrocellulose membranes. The mem-branes were 
blocked with 5% non fat milk in PBST buffer (PBS, pH = 
7.3 and 0.05% Tween-20) and incubi-ted overnight at 4°
C with primary antibodies, followed by hybridization 
with horseradish peroxidise conjuga-ted secondary 
antibodies. The bands were detected by enhanced 
chemiluminescence (GE Healthcare). The band signals 
of proteins were normalized to those of β-actin (internal 
control).  

Statistical analysis 

The data are expressed as mean ± standard deviation 
(SD). The significance of the differ-ence between 
different groups was determined using one-way 
analysis of variance (one-way ANOVA) using SPSS 
software (version 17.0). The differences were 
considered significant at p<0.05. 
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Figure 1: Fisetin inhibits the growth of endometrial cancer cells –KLE and Hec1 A 

Fisetin effectively reduced the viability of KLE and Hec1 A cells .Values are represented as mean ± S.D from 3 individual experiments 



 

Results 

The anti-proliferative effect of fisetin on KLE and Hec1 
A cells were assessed by MTT assay (Figure 1). Follow-
ing treatment with 20 µM fisetin, the viability was 
90.3% in Hec1A cells and 92.8% in KLE cells. However, 
with increasing concentrations of fisetin, the viable cell 
count sharply decreased thus exerting a dose-depen-
dent effect in the viability of cancer cells. At 100 µM 
fisetin exhibited a multi-fold decrease in the viable cell 
number compared to the lower concentrations (20 and 
40 µM). While the anti-proliferative effect was evident 
from the observed results, fisetin caused a more marked 
decline in the viability of Hec1 A than KLE cells.  

To determine whether the growth inhibitory effect is 
associated with cell cycle arrest, the distribution of cells 
in each phase of the cell cycle was analyzed using flow 
cytometry. As depicted in Figures 2 and Figure 3, expo-
sure of KLE and Hec1 A cells to growth suppressive 
concentrations of fiestin (20-100 μM) resulted in a 
significant increase in G2/M fraction. After treatment 
with 100 µM fisetin for 6 and 12 hours, the percentage 
of cells in the G2/M phase was 42.1 and 44.8% 
respectively in KLE cells and 44.16 and 45.90% in the 
Hec1 A cells (Figures 2, 3). 

Furthermore, the G2/M arrest induced by fisetin was 
observed to occur in a time- and dose-dependent 
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Figure 2: Effect of fisetin on cell cycle in KLE cells 

Fisetin at (20-100 µM)  induces G2/M cell cycle arrest in KLE cells in a dose and time–dependent manner. The increase in G2/M cells following 
fisetin exposure at 12 hours (A) were higher than at 6 hours exposure (B) 
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manner. The number of cells at G2/M phase following 
12 hours exposure was higher than 6 hours exposure to 
fisetin in both KLE and Hec1 A. However, as in cell 
viability, the cell cycle arrest was more pronounced in 
Hec1 A than KLE cells. In our study, fisetin exposure 
induced significant increase in G2/M fraction and this 
was accompanied by a decrease in G0/G1 and S phase 
cells. This indicates that the cell inhibitory effect of 
fisetin against the proliferation of KLE and Hec1 A cells 
is correlated with cell-cycle arrest.  

Cyclins, cyclin-dependent kinases (CDKs) and their 
inhibitors regulate cell cycle progression and arrest. 
Cyclin B1 and Cdc2 form a complex and co-operate to 

promote the G2/M phase transition. We investigated 
whether exposure to fisetin at 20-100 µM for 12 hours 
affected the expression of cyclin B1 and Cdc2 in cancer 
cells. Treatment with fisetin considerably suppressed 
the levels of cyclin B1 and induced a remarkable 
increase in the phosphorylation of Cdc2 at Tyr 15 
(Figure 4). The expression of cyclin B1 decreased nearly 
2-fold on exposure to fisetin at 100 µM. Enhanced levels 
of phosphorylation of Cdc2 at Tyr 15 suppresses its 
kinase activity and reduces the expression levels of 
cyclin B1 and subsequently leads to the inactivation of 
Cdc2-cyclinB1 kinase complex, thereby causing cell 
cycle arrest. Further, Cdc25C phosphatase regulates the 
phosphorylation state of Cdc2 at Tyr 15. The phospho-
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Figure 3: Influence of fisetin on cell cycle in Hec1 A cells 

Exposure to fisetin at (20 -100 µM) for 6 hours (A) and 12 hours (B) induces G2/M cell cycle arrest in a time and dose–dependent manner  
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Figure 4: Fisetin modulates the expressions of cell cycle regulatory proteins 

Fisetin at various concentrations modulates the expressions of cell cycle regulatory proteins in KLE (A, B) and Hec1 A cells (C, D)  
and causes G2/M cell cycle arrest .Values are presented as mean ± S.D from 3 individual experiments. arepresents statistical signif-
icance at p<0.05 compared against control as determined by one-way ANOVA  
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Figure 4: Fisetin modulates the expressions of cell cycle regulatory proteins (Cont.) 

Fisetin at various concentrations modulates the expressions of cell cycle regulatory proteins in KLE (A, B) and Hec1 A cells (C, D)  
and causes G2/M cell cycle arrest .Values are presented as mean ± S.D from 3 individual experiments. arepresents statistical signif-
icance at p<0.05 compared against control as determined by one-way ANOVA  
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rylation of Cdc25C following treatment with fisetin at 
20-100 µM was determined. The level of p-Cdc25C (Ser 
216) was notably increased on fisetin treatment (Figure 
4) while the levels of Cdc25C remained not much 
altered. The results suggest that fisetin-induced G2/M 
arrest is associated with the negative regulation of 
cyclin B1 and Cdc2 in Hec1A and KLE cells. 

Chk1/2 kinases act up-stream of Cdc25C (Matsuoka et 
al., 1998). As shown in Figure 4, fisetin markedly up-
regulated the phosphorylation status of Chk1/2 
kinases. The elevated expression of Chk1/2 kinases was 
observed to occur in a dose-dependent manner in both 
Hec1A and KLE cells. Thus could be suggested that the 
loss of Cdc25C phosphatase activity observed can result 
from the phosphorylation of inhibitory sites by Chk1/2. 
ATM kinases are central in triggering cellular responses 
to DNA damage/genotoxic stress in eukaryotic cells 
(Kastan and Lim, 2000; Shiloh, 2003) and are known to 
activate Chk1 and Chk2 (Khanna et al., 2001). We 
examined the expression of p-ATM on exposure to 
fisetin. Fisetin treatment of cells for 12 hours resulted in 
a strong increase in the levels of p-ATM protein, which 
showed that ATM was activated. Further, fisetin caused 
increased serine 139 phosphorylation of histone H2AX 
that is phosphorylated by ATM upon its activation by 
phosphorylation. These results suggest that fisetin-
induced G2/M phase arrest involves ATM checkpoint 
signalling.  

Fisetin treatment markedly increased both p21 and p27 
expressions in Hec1 A and KLE cells in a dose-depen-
dent manner (Figure 5). The levels of p21 and p27 
increased multifold on exposure to 100 µM fisetin when 
compared to the expression levels following treatment 
with 20 µM fisetin. In addition p21 and p27 expression 
was more pronounced in Hec1 A than KLE cells. 
Furthermore, p21 expression was higher than p27 upon 
fisetin treatment in both Hec1 A and in KLE cells.  

 

Discussion 

In our study, fisetin was observed to effectively 
modulate the levels of cyclin B1 and p-Cdc2. Fisetin 
induced marked elevations in the phophorylated forms 
of Cdc25C which could have caused raised p-Cdc2 
levels thus ultimately leading to their inactivation and 
cell cycle arrest.  

Phosphorylation of Cdc25C is controlled by Chk1 and 
Chk2 (Bartek and Lukas, 2003). However activity of 
Chk1 and Chk2 are regulated by ATM, which in turn is 
activated in response to DNA damage. Activated ATM 
results in the activation of Chk1 and Chk2 by phospho-
rylation, and also stabilizes p53 by phosphorylation (Al 
Rashid et al., 2011). 

Fisetin caused a significant increase in p-ATM levels 
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Figure 5: Fisetin induces the expressions of p21 and p27 

Fisetin at various concentrations induced the expressions of cell cycle inhibitor proteins   p21 and p27 in  KLE (upper) and Hec1 A 
cells (lower)  and causes G2/M cell cycle arrest .Values are presented as mean ± S.D from 3 individual experiments. arepresents 
statistical significance at p<0.05 compared against control as determined by one-way ANOVA  



 

thus indicating ATM activation which induces phospho
-rylation of Chk1 (Ser 345) and Chk2 (Ser 516) and also 
phosphorylation of Cdc25C (Ser 216) and Cdc2 (Tyr 15). 
Furthermore, in our study, fisetin exposure resulted in 
phosphorylation of H2AX (Histone H2A), a substrate of 
ATM kinases. H2AX phosphorylation is a major and 
early response to double-stranded DNA breaks (DSBs) 
(Fernandez-Capetillo et al., 2003). ATM kinase induces 
phosphorylation of ser 139 on the histone H2AX tail 
and the subsequent rapid formation of H2AX foci at the 
DSB sites (Redon et al., 2002). These observations 
suggest that fisetin may possibly cause a DNA damage 
response.  

We also assessed the role of p21 and p27 in fisetin-
induced G2/M arrest.  p21WAF1/CIP1, a member of the 
cyclin dependent kinase inhibitor (CDKI) family plays a 
role in both the G1 and G2 checkpoints (Harper et al., 
1993; Ando et al., 2001). Fisetin at various concentra-
tions caused a significant increase in p21 and p27 
expression both in KLE and Hec1 A cells suggesting 
that it effectively blocks cell cycle progression.  

Development of novel therapeutic agents is a critical 
need of today for the treatment and survival of patients 
with late-stage and recurrent endometrial cancer (Garai 
et al., 2006). Increasing amount of evidence suggests 
that certain phytochemicals have marked cancer 
chemopreventive properties (Waladkhani and Clemens, 
1998; Kelloff et al., 2000). Observations of the present 
investigation suggest that fisetin strongly inhibits cell 
cycle progression by causing G2/M cell cycle arrest. 
The findings of the study are in line with previous 
reports (Park et al., 2009; Shin et al., 2011; Lee et al., 
2013) demonstrating the significance of flavonoids inhi-
biting cell growth.  

In conclusion, fisetin effectively causes G2/M cell cycle 
arrest by modulating the expression of vital cell cycle 
regulating proteins– cdc25C-cdc2 via ATM-Chk1/2 
activation.  
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