
 

Introduction 

Curcumin has a salient chemical structure containing 
two ferulic acid residues joined by a methylene bridge. 
It has two hydrophobic phenyl domains that are 
connected by a flexible (seven carbon) linker. Although 
curcumin has unique structure feature, however it lacks 
in stability (Wang et al., 1997) and bioavailability fea-
tures (Gupta et al., 2011). Hence, numerous curcumin 
analogues were synthesized wherein to-date several 
natural and synthetic analogues of curcumin have been 
reported to possess therapeutic applications (Furness et 
al., 2005) in which some of them are used as potential 
anti-inflammatory agents (Mukhopadhyay et al., 1982). 
Molecular docking studies have found that curcumin 
can adopt many different structural conformations 
suitable for maximizing hydrophobic contacts with the 

macromolecule to which it is bound. For instance, the 
phenyl rings of curcumin can participate in 0-0 van der 
Waals interactions with aromatic amino acid side 
chains of macromolecules. Even though curcumin gene-
rally is hydrophobic in nature, the phenolic and carbo-
nyl moiety located at the end and the center of the 
molecule could participate in hydrogen bonding with 
that of targeted macromolecules. The keto-enol tauto-
merization also contributes to curcumin additional 
unique chemical functionality with a strong and direct 
electrostatic interaction to increase favorable free 
energies of association. 

Molecular modeling study carried out by Nirmal et al. 
(2008) showed that curcumin could bind at the active 
site of bovine pancreatic phospholipase A2 (PLA2) 
which is one of the key enzymes in inflammatory 
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pathway. A few other reports also supported that cur-
cumin and its analogues could bind to various enzymes 
which includes human immunodeficiency virus type-I 
protease (Sui et al., 1993), cyclooxygenase-1 (Selvam et 
al., 2005), DNA polymerase λ (Takeuchi et al., 2006), 
platelet-12-lipoxygenase (Jankun et al., 2006), cyclo-
oxygenase-2 (Padhye et al., 2009), DNA methyl trans-
ferase-1 (Liu et al., 2009), xanthine oxidase (Shen and Ji, 
2009), dipeptydyl peptidase-4 (Istyastono, 2009), glyco-
gen synthase kinase-3β (Bustanji et al., 2009), ribo-
nuclease A (Sahoo et al., 2009), glyoxalase-I (Liu et al., 
2010), protein kinase C (Majhi et al., 2010) and matrix 
metalloproteinases (Girija et al., 2010). 

Although curcumin and analogues have been reported 
to bind with various enzymes, till date no report is 
available for human neutrophil elastase inhibitory 
activity. Human neutrophil elastase has recently gained 
a lot of attention worldwide as it has a potential 
therapeutic target for the treatment of inflammation 
related diseases. This prompted us to carry out the 
present study on a selected 17 curcumin analogues 
among the 47 which were grouped under three major 
types of a) pentadiene-3-one, b) dibenzyldiene cyclo-
hexanone and c) dibenzyldiene cyclopentanone. Some 
of these compounds were subsequently reported for 
various biological activities such as anti-inflammatory, 
anti-oxidant, anti-tyrosinase (Lee et al., 2009), chemo-
tactic (Jantan et al., 2012) and anti-melanogenesis 
(Hosoya et al., 2012).  

The selected compounds are a) 2,5 -bis (2,3-dimethoxy 
benzylidene) cyclopentanone; b) 2,6 -bis (3,4,5-trimetho-
xybenzylidene) cyclohexanone; c) 2,6-bis (2,4,6-trimetho
-xybenzylidene) cyclohexanone; d) 2,6-bis (2,3,4-trime-
thoxybenzylidene) cyclohexanone; e) 2,6-bis (2,6-dime-
thoxybenzylidene) cyclohexanone; f) 2,6-bis (2,5-dime-
thoxybenzylidene) cyclohexanone; g) 2,6-bis (2,4-dime-
thoxybenzylidene) cyclohexanone; h) 2,6-bis (2,3-dime-
thoxybenzylidene) cyclohexanone; i) 2,6-bis (benzy-
lidene) cyclohexanone; j) 2,6-bis (4-hydroxy benzy-
lidene) cyclohexanone; k) 2,6-bis (4-hydroxy-3-methoxy 
benzylidene) cyclohexanone; l) 1,5-diphenyl-(E, E)-1,4 
pentadiene-3-one; l) 1,5-bis (2,4,6-trimethoxyphenyl)-1,4
-pentadiene-3-one; m) 1,5-bis (2,6-dimethoxyphenyl)-1,4
-pentadiene-3-one; n) 1,5-bis (2,4-dimethoxyphenyl)-1,4
-pentadiene-3-one; o) 1,5-bis (2,3-dimethoxyphenyl)-1,4-
pentadiene-3-one and p) 1,5-bis (2-hydroxyphenyl)-1,4-
pentadiene-3-one, were evaluated on the docking 
behaviour of human neutronphil elastase. Investiga-
tion was also done on human neutrophil elastase 
putative binding sites using Discovery Studio Version 
3.1 whereby the results from the present study would 
give some useful information for the researchers to 
design potent and selective human neutrophil elastase 
inhibitors of curcumin analogues in the near future. 

 

Materials and Methods 

Ligand preparation 

Chemical structures of ligands namely a) 2,5-bis (2,3-
dimethoxy benzylidene) cyclopentanone [Chemspider 
ID 1450996]; b) 2,6-bis (3,4,5-trimethoxy benzylidene) 
cyclohexanone [Chemspider ID 1372795]; c) 2,6-bis 
(2,4,6-trimethoxy benzylidene) cyclohexanone 
[Chemspider ID 24669292]; d) 2,6-bis (2,3,4-trimethoxy 
benzylidene) cyclohexanone 

[Chemspider ID 4480275]; e) 2,6-bis (2,6-dimethoxy 
benzylidene) cyclohexanone [Chemspider ID 3373346]; 
f) 2,6-bis (2,5-dimethoxy benzylidene) cyclohexanone 
[Chemspider ID 1415781]; g) 2,6-bis (2,4-dimethoxy 
benzylidene) cyclohexanone [Chemspider ID 1500590]; 
h) 2,6-bis (2,3-dimethoxy benzylidene) cyclohexanone   
[Chemspider ID 2530853]; i) 2,6-bis (benzylidene) 
cyclohexanone [Chemspider ID 1266977]; j) 2,6-bis (4- 
hydroxy benzylidene) cyclohexanone [Chemspider ID 
1468601]; k) 2,6-bis (4-hydroxy-3-methoxy benzylidene) 
cyclohexanone [Chemspider ID 1266900] and l) 1,5-
diphenyl-(E, E)-1,4 pentadiene-3-one [Chemspider ID 
555548] were retrieved from Chemspider compound 
database (www.chemspider.com). Unavailable three 
dimensional structures of m) 1,5-bis (2,4,6-trimethoxy 
phenyl)-1,4-pentadiene-3-one; n) 1,5-bis (2,6-dimethoxy 
phenyl)-1,4-pentadiene-3-one; o) 1,5-bis (2,4-dimethoxy 
phenyl)-1,4-pentadiene-3-one; p) 1,5-bis (2,3-dimethoxy 
phenyl)-1,4-pentadiene-3-one and q) 1,5-bis (2-hydroxy 
phenyl)-1,4-pentadiene-3-one were generated using 
ACD (Anonymous., 2009). 

Target protein identification and preparation 

The three dimensional structure of the human neutro-
phil elastase (PDB ID: 1H1B with resolution of 2.00 Å) 
was obtained from the Research collaborator for struc-
tural bioinformatics (RCSB) Protein data bank 
(www.rcsb.org). A chain of protein was pre-processed 
separately by deleting the chain B, ligand, as well as the 
crystallographically observed water molecules (water 
without hydrogen bonds). 

Molecular descriptors calculation 

Molinspiration online database was used to calculate 
thirteen descriptors (www.molinspiration.com), which 
are logP, polar surface area, molecular weight, number 
of atoms, number of O or N, number of OH or NH, 
number of rotatable bonds, volume, drug-likeness 
includes G protein coupled receptors (GPCR) ligand, 
ion channel modulator, kinase inhibitor and nuclear 
receptor ligand, and number of violations to Lipinski’s 
rule, for all selected ligands except two (2,6-bis (4-hydro
-xybenzylidene) cyclohexanone and 2,6-bis (4-hydroxy-
3-methoxy benzylidene) cyclohexanone) which have 
been reported earlier. 

Docking studies 

Docking studies were carried out on the crystal 
structure of human neutrophil elastase retrieved from 
Protein Data Bank using the CDOCKER protocol under 
the protein-ligand interaction section in Discovery 
Studio® 3.1 (Accelrys, San Diego, USA). In general, 
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CDOCKER is a grid-based molecular docking method 
that employs CHARMM force fields. This protein was 
firstly held rigid while the ligands were 78 Bangladesh J 
Pharmacol 2014; 9: 77-82 allowed to flex during the 
refinement. Two hundred random ligand conforma-
tions were then generated from the initial ligand 
structure through high temperature molecular 
dynamics, followed by random rotations, refinement by 
grid-based (GRID I) simulated annealing, and a final 
grid-based or full force field minimisation (Wu et al., 
2003). In this experiment, the ligand was heated to a 
temperature of 700 K in 2,000 steps. The cooling steps 
were set to 5,000 steps with 300 K cooling temperature. 
The grid extension was set to 10 Å. 

Hydrogen atoms were added to the structure and all 
ionisable residues were set at their default protonation 
state at a neutral pH. For each ligand, top ten ligand 
binding poses were ranked according to their 
CDOCKER energies, and the predicted binding interac-
tions were analyzed. 

 

Results and Discussion 

Medicinal and computational chemists proposed the 
concept of “drug-likeness”, which is valuable tool to 
select more promising lead candidates by predicting 
(or) evaluating their drug-likeness property in the early 
stage of drug iscovery and development (Lipinski et al., 
2001). The rules of drug-likeness were proposed by 
analyzing the physico-chemical properties of known 
drugs. The most famous drug-likeness filter is 
Lipinski’s “rule-of-five”. In the present study violation 
of Lipinski’s “rule-of-five” was recorded using 
Molinspiration online tool, if Log ˃5, Molecular eight 
(MW) ˃500, number of N and O (hydrogen bond accep-
tors) ˃10, number of OH and NH (hydrogen bond 
donors) ˃5 and number of rotatable bonds ˃15. Inter-
estingly, all the 15 ligands complied with five rules of 
thumb as tabulated in Table I. 

The molecular physicochemical and the drug-likeness 
properties of two ligands which are 2, 6-bis (4-hydroxy 
benzylidene) cyclohexanone (Lam et al., 2012) and 2, 6-
bis (4-hydroxy-3-methoxy benzylidene) cyclohexanone 
(Lam et al., 2012; Sangeetha et al., 2013) were already 
been reported. In addition, Sangeetha et al. (2013) also 
has reported the molecular physicochemical and the 
drug-likeness properties of curcumin, the parent 
compound. 

With regard to bioactivity score, 1, 5-bis (2-hydroxy 
phenyl)-1, 4-pentadiene-3-one (compound 17) has 
exhibited least score towards nuclear receptor ligand 
(0.05) and enzyme inhibitor (0.10) compared to all other 
ligands as shown in the Table II. 

Human neutrophil elastase is a 30kD molecular weight 
glycoprotein and synthesized as zymogen (pro-form), 
which becomes active form after post-translation 

modification (Pham, 2006). Human neutrophil elastase 
has specificity towards small hydrophobic amino acids. 
The potent catalytic activity is facilitated by a catalytic 
triad that is conserved among all serine proteinase, 
which consists of His, Asp and Ser amino acid residues 
forming a charge relay system. During proteolysis, the 
side chain of the peptide is located in the S1 specificity 
pocket while its backbone carbonyl is placed in the ‘oxy 
anion hole’ and forms hydrogen bonds with the amino 
group of Gly193 and Ser195 amino acid residues, thus 
stabilizing the charge transition state (Bode et al., 1989).  

Several studies have been conducted recently to 
examine the binding interaction of inhibitors to the 
human neutrophil elastase structure (Siedle et al., 2002; 
Sivamani et al., 2012; Lucas et al., 2013; Crocetti et al., 
2013; Radhakrishnan et al., 2013). In the present study, 
the aim is to understand the binding interactions 
between curcumin analogues and the active site of the 
human neutrophil elastase. The crystal structure of 
human neutrophil elastase (1H1B with resolution of 
2.00 A)̊was retrieved and then prepared according to 
the standard protocol implemented in Discovery 
Studio® 3.1. Subsequently the docking and interaction 
results were tabulated in Table III, in which 2,6-bis 
(3,4,5-trimethoxy benzylidene) cyclohexanone 
(compound 2), 2,6-bis (2,3,4-trimethoxy benzylidene) 
cyclohexanone (compound 4) and 1,5-bis (2,4,6-trime-
thoxy phenyl)-1,4-pentadiene-3-one (compound 13) 
exhibited the maximum interaction energy (-40 kcal/
mol). In contrast, 1, 5-diphenyl-(E, E)-1, 4 pentadiene-3-
one (compound 12) and 2, 6-bis (4-hydroxy-3-methoxy 
benzylidene) cyclohexanone (compound 9) showed 
very least interaction energy of -23.7 and -24.7 kcal/mol 
respectively compared to all other ligands (-28.3 to -37.3 
kcal/mol) as shown in the Table III. 

Whereby 1) 2,5-bis (2,3-dimethoxy benzylidene) cyclo-
pentanone, 2) 2,6-bis (3,4,5-trimethoxy benzylidene) 
cyclohexanone, 3) 2,6-bis (2,4,6-trimethoxy benzylidene) 
cyclohexanone, 4) 2,6-bis (2,3,4-trimethoxy benzylidene) 
cyclohexanone, 5) 2,6-bis (2,6-dimethoxy benzylidene) 
cyclohexanone, 6) 2,6-bis (2,5-dimethoxy benzylidene) 
cyclohexanone, 7) 2,6-bis (2,4-dimethoxy benzylidene) 
cyclohexanone and 8) 2,6-bis (2,3-dimethoxy benzyli-
dene) cyclohexanone. Hydrogen atoms have been 
omitted in the two dimensional diagram for better 
clarity. The pink line indicates the hydrogen bond 
interaction. In addition to these, bond distances are 
indicated in angstroms (A)̊unit. 

The ligands are 9) 2,6-bis (benzylidene) cyclohexanone, 
10) 2,6-bis (4-hydroxy benzylidene) cyclohexanone, 11) 
2,6-bis (4-hydroxy-3-methoxy benzylidene) cyclo-
hexanone, 12) 1,5-diphenyl-(E, E)-1,4 pentadiene-3 -one, 
13) 1,5-bis (2,4,6-trimethoxy phenyl)-1,4-penta-diene-3-
one, 14) 1,5-bis (2,6-dimethoxy phenyl)-1,4-pentadiene-
3-one, 15) 1,5-bis (2,4-dimethoxy phenyl)-1,4-penta-
diene-3-one and 16) 1,5-bis (2,3-dimethoxy phenyl)-1,4-
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pentadiene-3-one. Hydrogen atoms have been omitted 
in the two dimensional diagram for better clarity. The 
pink line indicates charge interaction. In addition to 
these, bond distances are indicated in angstroms 
(A)̊unit. The 17 ligand is 1, 5 -bis (2-hydroxy phenyl)-

1, 4-pentadiene-3-one. Hydrogen atoms have been 
omitted in the two dimensional diagram for better 
clarity. The pink line indicates the charge interaction. In 
addition to these, bond distances are indicated in 
angstroms (A)̊unit. 
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Table I 

Molecular descriptors analysis of 15 ligands using Molinspiration online software tool 

Ligand Log Aa  Natomsc MWd noNe nOH NHf Nviolationsg Nrotbh Volumei 

Compound 1   28       

Compound 2   33       

Compound 3   33       

Compound 4   33       

Compound 5   29       

Compound 6   29       

Compound 7   29       

Compound 8   29       

Compound 9   21       

Compound 12   18       

Compound 13   30       

Compound 14   26       

Compound 15   26       

Compound 16   26       

Compound 17   20       

aOctanol-Water partition coefficient; bPolar surface area; cNumber of non hydrogen atoms; dMolecular weight; eNumber of hydrogen bond accep-
tors [O and N atoms]; fNumber of hydrogen bond donors [OH and NH groups]; gNumber of rule of 5 violations; hNumber of rotatable bonds; 
iMolecular volume   

Table II 

Bioactivity score calculation of 15 ligands using Molinspiration online software tool 

Ligand lig-
and modulator 

Kinase in-
hibitor 

Nuclear receptor 
ligand  

Enzyme 
 

Compound 1       

Compound 2       

Compound 3       

Compound 4       

Compound 5       

Compound 6       

Compound 7       

Compound 8       

Compound 9       

Compound 12       

Compound 13       

Compound 14       

Compound 15       

Compound 16       

Compound 17       



 

Among the 17 ligands studied, five compounds namely 
compounds 7-10 (2,6-bis (2,4-dimethoxy benzylidene) 
cyclohexanone; 2,6-bis (2,3-dimethoxy benzylidene) 
cyclohexanone; 2,6-bis (benzylidene) cyclohexanone; 2,6 
-bis (4-hydroxy benzylidene) cyclohexanone) and 15 
(1,5-bis (2,4-dimethoxy phenyl)-1,4-pentadiene-3-one) 
did not exhibit any interaction with any of amino acid 
residues active site (Table III). On other hand, we found 
that seven ligands (3, 11-14, 16, 17) interacted with 
Arg147 amino acid residue. Interestingly, none of the 
ligands was found to be interacted with Ser195 amino 
acid residue. No reports are available for elastase 
inhibitory activity of these 17 curcumin analogues till 
date. However parent compound (curcumin) has been 
reported to inhibit metalloelastase (MMP-12) using 
both, molecular docking and wet laboratory studies by 
Singh et al. (2012).  

 

Conclusion 

We strongly believe that the results of this present 
study might provide new insight in understanding 
these 17 ligands (curcumin analogues) as potential 
candidates for human neutrophil elastase inhibitory 
agents. To our knowledge, we are the first to report the 
binding of these 12 curcumin analogues with that of 
human neutrophil elastase structure even though 
various enzymes were known to bind to the parent 
compound (curcumin). 
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