Original Article

Sensorineural component in chronic suppurative otitis media

Ahmed Raquib¹, Ahmmad Taous², Rojibul Haque³

Abstract:
A cross sectional study was conducted at the Department of Otolaryngology and Head-Neck surgery, Dhaka Medical College Hospital, Dhaka during the period of July 2005 to June 2007 to determine whether chronic suppurative otitis media (CSOM) can cause sensorineural hearing loss (SNHL) and to note its degree and its relation to duration of disease.

130 patients with unilateral CSOM were included in the study age ranging from 11 to 50 years after exclusion of other possible causes of SNHL such as meningitis, head injury, previous ear surgery, and chronic noise exposure. The use of unilateral CSOM cases provided a contralateral ear to serve as a control thus excluded common variables, such as presbycusis, parenteral ototoxic medications, metabolic disorders, and the effect of sex or genetics. Bone conduction threshold elevation between diseased and control ear was considered as the indicator of inner ear damage.

In this series, CSOM is seen to be associated with sensorineural hearing loss. The study showed a bone conduction threshold elevation from 4.1dB to 10.7dB across frequency ranges. Significant threshold elevation was observed in relation to the disease duration. The average bone conduction loss at 4 kHz was higher than the average at the speech frequency range.

This study suggests that CSOM can cause significant bone conduction threshold elevation and it should be considered when managing this problem. Early detection and prompt treatment may limit this potential handicap.

Key words: CSOM, Sensorineural hearing loss, Bone conduction

Introduction:
Chronic suppurative otitis media is persistent inflammation of the middle ear or mastoid cavity, clinically manifested with deafness and discharge through a persistent defect in the tympanic membrane. CSOM is typically a persistent disease, insidious in onset often capable of causing severe destruction and irreversible sequelae.

Hearing loss associated with CSOM is matter of concern globally, particularly in children because of its long term effect on development of essential skill in speech, language and social interaction. Hearing disability in adults also has its bearing on the individual and on the society.

Chronic suppurative otitis media is fairly common disease in our country especially in rural community¹. WHO in 2004 mentioned, the worldwide prevalence of chronic suppurative otitis media is 65-330 million people and 39-200 million (60%) suffer from clinically significant hearing impairment². It is observed CSOM frequently affects children in developing countries³. In a study in our country, it was found 34.56% of school children had different grades of hearing impairment and 16.95% having chronic suppurative otitis media had mild to moderate hearing loss (41-60 dB)¹.

Tuning fork tests and an air and bone conduction audiograph usually show a mainly conductive hearing loss…but cochlear degeneration can develop very insidiously in chronic otitis media⁴. A study showing positive association also. The degree of loss was small 5 dB (Bone conduction threshold difference at 0.5, 1, 2 kHz) but individual variation was large and clinically significant⁵. It is found in a study that mean increase in preoperative bone conduction threshold between diseased and control (contralateral normal) ears ranging from 5.2 dB to 9.02 dB at different frequencies. Their
study population included individuals with unilateral chronic otitis media, no history of head injury, meningitis, previous otological surgery, systemic ototoxic drug therapy. The use of unilateral CSOM cases provided a contralateral ear as a control thus eliminating common variables like presbycusis, parenteral ototoxic medications, metabolic disorders, and the effect of sex or genetics.

In these studies, just mentioned, deterioration in bone conduction (BCT) was used as the measurement of inner ear changes. To find out the pathological basis of inner ear affection Cureoglu et al. in 2004 studied fifteen human temporal bones with unilateral chronic otitis media and compared with opposite normal temporal bones. Loss of hair cells was common in basal turn of cochlea and there was also significant reduction of area of stria vascularis and spiral ligament compared to normal side. In a study, among 195 patients with monolateral chronic otitis media (COM) disease duration showed significant influence upon sensorineural hearing loss and an average increase of 5.5 dB for every 10 years was found by Cusimano et al. Similar view is shared by another study.

In this study, which is the first of its kind in our country, was carried out over a limited period of time and in limited number of patients with unilateral CSOM. General objective was to evaluate the relationship between chronic suppurative otitis media (CSOM) and sensorineural hearing loss. Its specific objectives was I). to find out degree of sensorineural hearing loss in CSOM, II). to correlate the degree of hearing loss with duration of disease.

Methods:
This cross-sectional study was done in Department of Otolaryngology and Head-Neck Surgery, Dhaka Medical College Hospital, Dhaka during the period July 2005 to June 2007 (2 years). The patients suffering from Chronic Suppurative Otitis Media who attended the outpatient department and/or admitted in the Indoor of Department of Otolaryngology and Head-Neck Surgery, Dhaka Medical College Hospital, Dhaka, during the study period were the study population. Purposive sampling was done using the inclusion criteria: I) Unilateral chronic suppurative otitis media (Normal tympanic membrane in contra lateral ear) II) Patients with age ranging from 11 to 50 years and exclusion criteria : patients with H/O of head injury, meningitis, previous ear surgery, chronic noise exposure.

Result:
The findings of the study obtained from data analyses are documented below.

Age distribution:
Age distribution demonstrates that over 35% of the patients were 20 – 30 years of age followed by 32.3% between 30 – 40 years, 20.8% between 40 years or above and 11.5% below 20 years of age. The mean age of the patients was 31.1 ± 9.8 years and the lowest and highest ages were 11 and 50 years respectively.

Occupation:
Distribution of the patients by occupation shows in Figure-1.

Presenting complaints:
Mode of clinical presentation demonstrates that deafness was commonest symptom (93.8%), followed by ear discharge (84.6%), tinnitus (39.2%), earache (28.5%) and dizziness (6.2%) (Table-I).

Table-I

<table>
<thead>
<tr>
<th>Presenting complaints</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deafness</td>
<td>122</td>
<td>93.8</td>
</tr>
<tr>
<td>Ear discharge</td>
<td>110</td>
<td>84.6</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>51</td>
<td>39.2</td>
</tr>
<tr>
<td>Earache</td>
<td>37</td>
<td>28.5</td>
</tr>
<tr>
<td>Dizziness</td>
<td>08</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Table-II

Distribution of patients by presence of risk factors
(n = 130)

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ototoxic drug</td>
<td>58</td>
<td>44.6</td>
</tr>
<tr>
<td>DM</td>
<td>22</td>
<td>16.9</td>
</tr>
<tr>
<td>HTN</td>
<td>14</td>
<td>10.8</td>
</tr>
<tr>
<td>Renal disease</td>
<td>05</td>
<td>3.9</td>
</tr>
<tr>
<td>Family history of hearing impairment</td>
<td>03</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Bone conduction:

Table-IV shows the comparison of bone conduction between diseased and healthy ears at different frequencies. At all the frequencies the bone conduction was observed to be significantly higher in the diseased ears than those in the contralateral healthy ears (p < 0.001).

Table-III

Bone conduction between diseased and healthy ears (n = 130)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Bone conduction (dB)</th>
<th>p-value</th>
<th>Diseased Ear (n = 130)</th>
<th>Healthy Ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>8.0 ± 9.1</td>
<td>< 0.001</td>
<td>3.9 ± 6.4</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>10.4 ± 10.4</td>
<td>< 0.001</td>
<td>4.0 ± 6.3</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>18.9 ± 10.9</td>
<td>< 0.001</td>
<td>8.2 ± 6.4</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>17.1 ± 12.1</td>
<td>< 0.001</td>
<td>7.3 ± 8.4</td>
<td></td>
</tr>
</tbody>
</table>

Data were analyzed using paired t-Test and were presented as mean ± SD.

Table-IV

Bone conduction between diseased and healthy ears (n = 130) in speech frequency and 4kHz

<table>
<thead>
<tr>
<th>Bone conduction (dB)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone conduction diseased ear, speech frequency</td>
<td>12.32 ± 9.28</td>
</tr>
<tr>
<td>Bone conduction healthy ear, speech frequency</td>
<td>5.39 ± 5.48</td>
</tr>
<tr>
<td>Bone conduction, diseased ear, 4 kHz</td>
<td>17.12 ± 12.18</td>
</tr>
<tr>
<td>Bone conduction, healthy ear, 4 kHz</td>
<td>7.35 ± 8.04</td>
</tr>
</tbody>
</table>

Fig.-2: Sensorineural hearing loss detected among the study subjects.

Fig.-3: Bone conduction loss related to duration of disease (n = 130). Fig. compares the hearing loss experienced by the patients relative to duration of disease.

Fig.-4: Correlation between duration of diseases and hearing loss (dB) at 500 Hz. No significant correlation between duration of illness and hearing loss at 500 HZs was observed (r = 0.074, p < 0.403)
Discussion:
In this present series, about 68% of patients were in third and fourth decades. Mean age was 31.1 ± 9.8 years. This age range matches the samples in Cusimano et al, it was 31.2±16, in El Sayed it was 35.3 years and age range was also similar in studies by Paparella et al. Among respondents, by occupation 30.8% were housewife, followed by 23.1% students, 22.3% service holders and 13.1% business. Highest 79% of the patients were in the middle income group. The prevalence of CSOM is more in people of lower socioeconomic group. In my series, patients who sought treatment in the place of study and those who maintained the subsequent visits after relevant investigations could be included in the study. This probably resulted in the outcome of highest representation of middle income group of people in my series. Among them 84(65%) were from urban area and 46(35%) were from rural area. Higher proportion of urban patients may be the reflection of inclusion of defined group of patients in an urban referral hospital.

Presence of risk factors for developing sensorineural hearing loss (SNHL) in CSOM and their relative incidence was investigated. It was found that 10.8% of patients in my series were hypertensive. The studies that relate to vascular disorders and hearing are inconclusive. This is illustrated by one of the largest and most recent human studies, by Gates et al, which followed 1662 patients from the Framingham Heart Cohort study. After adjusting for age the only risk factor associated with hearing loss was systolic blood pressure in women and that was a small effect (1dB low frequency elevation for every 20mm Hg); there was no effect with diastolic pressure.

Another risk factor, Diabetes Mellitus (DM) was present in 22(16.9%) of patients. Finding the association between hearing loss and diabetes mellitus differed from literature to literature. Taylor and Irwin found diabetics as a whole were deafer particularly in the lower frequencies than the controls and gradually approach each other in the middle range (1-4 kHz) and were similar at 8 kHz. In contrast, Virtaniemi et al hearing level tended to be worse in diabetic patients than in controls but the difference was statistically different only in frequencies of 6kHz and 8kHz. Microvascular complication and disease duration was associated with elevated hearing thresholds. In this series, 3(13.6%) out of 22 diabetic patients had developed sensorineural hearing loss.

Fig.-5: Correlation between duration of disease and hearing loss at 4000 Hz. Duration of illness and hearing loss at 4000 Hzs was observed to be significantly correlated (r = 0.335, p < 0.001).

Fig.-6: Correlation between duration of disease and hearing loss at 1000 Hz. Duration of illness and hearing loss at 1000 Hzs was not observed to be correlated (r = 0.096, p < 0.277).

Fig.-7: Correlation between duration of disease and hearing loss at 2000 Hz. No significant correlation between duration of illness and hearing loss at 2000 Hzs was observed (r = 0.149, p = < 0.092)
Being a systemic disease it is expected to have bilateral affection rather than unilateral. So unilateral sensorineural hearing loss of these three patients of current series cannot be solely explained either by diabetes or CSOM.

Possible role of ototoxicity relating to certain therapeutic agents both topical and systemic were enquired. In our series of 130 patients of CSOM 44.6% gave history of using any of the ototoxic drugs. Most of the patients did use different topical aural medications, patients received these topical drops usually for 7-10 days and none of the patients did use the drug for more than two weeks in a single occasion. Among the sample patients 44.6% could mention the name of the preparation but most of them (52.3%) could not. Patients treated with ototoxic antibiotics (containing aminoglycosides) were not excluded from the present study because the majority of patients received these medications. Though ototoxic antibiotics ear drops accepted as risk factors but it is related to duration of treatment and duration of disease also14. But Linder et al. mentioned possible ototoxic side effects of ototopical preparations in continued use beyond two weeks15. Family history may sometimes play a role. But in this series 2.3% gave history of acquired deafness of one of their parents. So it is not expected to carry any significant relevance in this present series.

Levine et al. in 1989 in their study found the mean bone conduction difference for the pure-tone average was 9.1 dB and ranged from 5.6 to 12.8dB across the frequency range16. In the present series bone conduction measurement in diseased and uninvolved contralateral side shows there is both absolute and relative elevation of bone conduction in diseased side and this elevation is significantly higher (p<0.001) at all frequencies. In 500Hz, 1000Hz, 2000Hz, 4000Hz bone conduction threshold in diseased ear is 8.0, 10.4, 18.9 and 17.1dB respectively and threshold difference is 4.1, 6.0, 10.7 and 9.7dB respectively.

Mean bone conduction threshold in Speech frequencies (500,1000,2000 Hz) and separately at 4000Hz is shown in Table-III. It shows 6.93dB difference in speech frequencies which increases to 9.77dB at 4000Hz. It demonstrates that higher frequency is more susceptible than lower frequencies. It conforms with findings of Papp et al.17, who reported among 121 patients a threshold elevation from 5.91dB to 8.8dB at speech frequencies and 4kHz respectively. Similar result is observed by MacAndie and O’Reilly6 in which bone conduction difference of the diseased and control ears ranged from 5.24 to 9.02 Hz across frequency range. The difference tended to increase with increasing frequency.

Paparella et al. in 1984 described a large series of 607 patients with unilateral CSOM from six centers of five countries across the globe. Bone conduction impairment (30dB or greater at two or more frequencies in 1,2 and 4 kHz) was 11% in Minnesota, 23% in Italy, 12% in Finland, 30% in New York, 18% in Sweden, 11% in Korea with an average of 18 percent11. Similar result was found by Vartainen and Karjalainen18 who used the criteria of 30dB or more bone conduction loss. In their series of 874 chronically infected ears SNHL was 1.6% in control ears and 18% in chronically infected ears. An average hearing impairment of 25dB or greater over the frequencies 0.5,1,2 and 4 kHz is presumed as working definition for sensorineural pathology. Applying the same threshold levels in bone conduction (BCT), in this series 10% had developed sensorineural hearing loss among 130 patients (Fig. 2). So findings of this study confirms with the other literatures.

In general, it is shown that the duration curve slopes upwards to the right meaning progressive duration of disease causes progressive bone conduction threshold deterioration (Fig. 3). It is more evident as frequency is increased from smaller to higher one (e.g. 0.5kHz, 1, 2, 4kHz). Significant correlation with duration of disease is found only in 4kHz (Fig. 4-7). Cusimano et al. observed statistically significant increase in the sensorineural component in the hearing loss with respect to those of the healthy ears (0.5kHz, 1, 2, 4kHz) related to duration of pathology7. Similar effect of duration also reported by El Sayed10, Vartainen and Karjalainen18. The duration of infection was frequently based on a vague subjective opinion, and it may be that a better correlation of duration of infection with threshold difference would have been found with more accurate data.

The findings of a BCT difference between normal and infected ear requires an explanation of what might be causing it. Walby et al. although admits possibility of invasion of inner ear through different routes, assumes mechanics of sound transmission as a plausible explanation for the hearing loss19. In the other way, a number of microbial sub-products, products of tissue degradation, tissue enzymes and/or humoral factors
are generated or involved in the suppurative process and their effects can be deleterious to cochlear function, if contact with the structures of the inner ear is possible. Closer location of the hair cells responsible for high frequency hearing (to the base of the cochlea) and the round window probably explains this. According to Papp et al (2003) harmful agents (like inflammatory mediators) penetrating the round window membrane may reach these cells in a higher concentration, in this way.

References:

