ABSTRACT
Radiolabeled tracers targeting prostate-specific membrane antigen (PSMA) have revolutionized PET imaging for prostate cancer diagnosis. Here, we present the inaugural production and quality control assessment of \(^{18}F\) PSMA-1007 at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Bangladesh. The synthesis, conducted via a one-step procedure, yielded remarkable radiochemical yields (46.85%) with synthesis time 40 minutes. Quality control measures adhered to European Pharmacopoeia standards, enabling clinical deployment across Nuclear Medicine and PET-CT centers in Bangladesh. This pioneering effort marks a significant advancement in prostate cancer imaging within the region.

Keywords: \(^{18}F\) PSMA-1007; prostate cancer; PET imaging; quality control; Bangladesh

INTRODUCTION
Prostate-specific membrane antigen (PSMA)-PET has emerged as a superior imaging modality for prostate cancer diagnosis, particularly in cases with low PSA levels (1-3). Though gallium-68-labeled PSMA-targeting radioligands are prevalent, their production capacity is limited with the cyclotron (4-6). Hence, there's a growing interest in radiofluorinated PSMA ligands (6,7). Notably, \(^{18}F\) PSMA-1007 has shown promise in PET imaging of prostate cancer (8,9). Although widely adopted elsewhere, its synthesis and clinical use in Bangladesh were pending. This study bridges the gap by detailing the inaugural production and quality control processes of \(^{18}F\) PSMA-1007 at NINMAS.

METHODS
\(^{18}F\) Fluoride was produced by the \(^{18}O\) (\(p, n\))\(^{18}F\) nuclear reaction with proton irradiation to 2.5 mL \(^{18}O\) H\(_2\)O (98% abundance, Huayi Technology, China) using a cyclotron with 18/9 MeV energy (Cyclone®-18/9, IBA, Germany). The synthesis of \(^{18}F\) PSMA-1007 was performed using a single use cassette-type Sythera® autosynthesizer (IBA, Germany, Figure-1) via direct substitution. Radiolabeling was conducted using precursor PSMA-1007 and Tetrabutylammonium hydrogen carbonate (TBAHCO3-) solution (ABX Germany, Figure-2), with quality control tests performed according to established protocols including gas chromatography, potentiometry, limulus amebocyte lysate test, bubble point test, and thin layer chromatography.
Figure-2: Synthesis $[^{18}\text{F}]$ PSMA-1007 by direct nucleophilic substitution reaction.

RESULTS

$[^{18}\text{F}]$ PSMA-1007 was successfully synthesized with radiochemical yields of 46.85% and synthesis time 40 minutes, meeting European Pharmacopoeia standards. Quality control assessments verified the formulation's compliance with safety and efficacy criteria (Table-1), facilitating its clinical utility for prostate cancer detection in Bangladesh.

<table>
<thead>
<tr>
<th>Quality parameter</th>
<th>Specification</th>
<th>Results</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Colorless/Clear/No particle</td>
<td>Colorless/Clear /No</td>
<td>Pass</td>
</tr>
<tr>
<td>Bacterial Endotoxin Test</td>
<td>< 17.5 EU/mL</td>
<td>0.2024 EU/mL</td>
<td>Pass</td>
</tr>
<tr>
<td>pH</td>
<td>4.5-8.5</td>
<td>6.5</td>
<td>Pass</td>
</tr>
<tr>
<td>Radiochemical Purity (TLC)</td>
<td>> 95%</td>
<td>96.1%</td>
<td>Pass</td>
</tr>
<tr>
<td>Half Life</td>
<td>105-115 min</td>
<td>108 min</td>
<td>Pass</td>
</tr>
<tr>
<td>Gamma-ray Energy</td>
<td>511 keV</td>
<td>511 eV</td>
<td>Pass</td>
</tr>
<tr>
<td>Filter Integrity Test</td>
<td>> 50 psi</td>
<td>62 psi</td>
<td>Pass</td>
</tr>
<tr>
<td>Residual DMSO</td>
<td>< 5000 ppm</td>
<td>100 ppm</td>
<td>Pass</td>
</tr>
<tr>
<td>Residual Ethanol</td>
<td>< 5000 ppm</td>
<td>256 ppm</td>
<td>Pass</td>
</tr>
<tr>
<td>Sterility test (FTM & TSB)</td>
<td>No turbidity</td>
<td>No Growth</td>
<td>Pass</td>
</tr>
</tbody>
</table>

DISCUSSION

Prostate-specific membrane antigen (PSMA) plays a pivotal role in prostate cancer (PCA) imaging and therapy due to its high expression in cancer cells. PSMA-labeled radiotracers enable precise detection of PCA lesions, aiding in staging, restaging, and treatment response assessment (10). $[^{18}\text{F}]$-labeled PSMA-targeted PET imaging compounds offer significant advantages over $[^{68}\text{Ga}]$-PSMA. They enable facilitated delivery from distant suppliers, expanding accessibility especially in smaller hospitals without onsite $[^{68}\text{Ga}]$-generators, potentially leading to cost savings. $[^{18}\text{F}]$-labeled radiotracers provide higher positron yield and lower energy, reducing image noise and improving contrast resolution for enhanced lesion detection. Their longer half-life ensures improved imaging protocols and flexibility in study design, while avoiding regulatory restrictions on onsite production or limited cyclotron access. These advantages make $[^{18}\text{F}]$-labeled compounds significant in optimizing prostate cancer imaging and facilitating broader clinical adoption (11). Apart from these issues, cyclotron facility of NINMAS is limited in producing $[^{68}\text{Ga}]$ because we lack the necessary targets and related facilities. As a result, we chose to synthesize $[^{18}\text{F}]$ PSMA-1007 instead. The successful synthesis and quality control assessment of $[^{18}\text{F}]$ PSMA-1007 at NINMAS demonstrate the feasibility and efficacy of implementing this novel radiotracer for prostate cancer imaging in Bangladesh. The efficient one-step synthesis process, coupled with stringent quality control

199
measures, ensures the formulation's safety and efficacy for routine clinical use across the region. This achievement underscores the institution's commitment to advancing molecular imaging technologies and enhancing patient care in Bangladesh.

CONCLUSION

The pioneering synthesis and quality control evaluation of 18F PSMA-1007 at NINMAS mark a significant milestone in advancing prostate cancer imaging in Bangladesh.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to the authorities of National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Shahbagh, Dhaka, Bangladesh, for providing the necessary chemicals, facilities and support for conducting the synthesis. Special thanks are extended to the technical staff for their assistance during the synthesis and quality control procedures.

REFERENCES

