Immunotherapy in Radioactive Iodine Refractory Thyroid Cancer – Case Report and Review of Literature

Muhammad Farhan Muhtasim, Abdullah Al Persi, Mahjabin Nobi Khan, Noor-e-Amrin Alim, Mohammad Sazzad Hossain, Anjuman Ara Akhter, Pabitra Kumar Bhattacharjee

1 Medical Officer, 2Scientific officer, 3Sr. Medical Officer, 4Chief Medical Officer, 5Director
Institute of Nuclear Medicine & Allied Sciences (INMAS), Chattogram

Correspondence Address: Dr. Muhammad Farhan Muhtasim, Medical Officer, INMAS, Chattogram, Chittagong Medical College Hospital, Chattogram-4203. E-mail: muhtasim50@gmail.com

ABSTRACT
The therapeutic approach to radioiodine-refractory advanced differentiated thyroid cancer has undergone significant advancements in recent years, leading to a paradigm shift in its management protocol. Despite being recognized for its favorable prognosis, 15–25% of cases continue to defy conventional treatment. In recent times, cancer immunotherapy has been revolutionized by the approval of immune checkpoint blockade therapies, including anti-angiogenic multi-kinase inhibitors and fusion-specific kinase inhibitors. However, none of these treatments are curative, and most patients eventually show disease progression. Therefore, contemporary research is now focused on detecting resistance mechanisms to these agents.

This case report discusses the progression of a radioiodine-refractory advanced DTC patient who received conventional management followed by two multi-kinase inhibitors, Lenvatinib and Cabozantinib. Consequently, the prognosis was assessed using biochemical, genetic, and clinical findings.

Keywords: radioiodine refractory thyroid cancer, immune checkpoint blockade, multi-kinase inhibitors.

CASE REPORT
In late 2018, a 68-year-old woman reported a swelling in front of the neck with nodular sensation along the left side of the neck. A diagnostic ultrasound was requested, which revealed a solid nodule with microcalcification in the left thyroid lobe as well as left anterior cervical lymphadenopathy with a grossly altered architecture. Fine-needle aspiration was suggestive of papillary thyroid carcinoma, with evidence of metastasis to the left anterior cervical lymph nodes (levels II, V, and VI). Eventually, the patient underwent total thyroidectomy with modified radical neck dissection type-1 on the left and comprehensive neck dissection on the right. Per-operative findings were significant for adherence of the tumor to the left carotid artery and left internal jugular vein (IJV); hence, the left sternocleidomastoid and IJV were sacrificed. The post-operative histopathology report revealed papillary carcinoma with bilateral metastasis to cervical lymph nodes (9 on the left and 3 on the right) with a staging of pT3N2Mx. She was initially treated with 150 mCi of radioactive iodine in early 2019. Her post-therapy scan showed a single focus of radiotracer concentration in the thyroid bed. She was initiated on levothyroxine replacement therapy and advised to follow up.

Her regular follow-up visits, which comprised estimation of thyroglobulin, anti-thyroglobulin antibodies, and ultrasound of the neck, revealed evidence of structural disease on both sides of the anterior cervical chain as well as a persistently elevated thyroglobulin level. For her further management, she was planned for a second surgery.

Eventually, excision of a recurrent left neck mass was performed in mid-2022, which showed a large neck mass with about 240° encircling adhesion to the left carotid artery and two other masses near the manubrium sterni. Additionally, her post-operative CT scan revealed irregular enhancing soft tissue mass (28x21x20 mm) in the thyroid bed in the upper pre-tracheal region and bilateral extensive pulmonary and right pleural metastasis. Following that, she received her second radioactive iodine therapy with 150 mCi in late 2022.

Nevertheless, despite receiving radioactive therapy twice, disease progression was evident. Her thyroglobulin level continued to remain elevated, and a further high-resolution CT scan revealed irregular enhancing lower pretracheal mass (24x19x18 mm), pulmonary and pleural metastasis, and an irregular
myocardial wall of the right atrium with diffuse pericardial thickening. Moreover, histopathology of tissue from the neck mass showed papillary adenocarcinoma of the thyroid. Despite that, her radioactive iodine whole-body scan showed no focal or diffuse radiotracer uptake anywhere in the body.

Figure 1: Post therapy whole body scan image of a 68-year-old woman of differentiated thyroid carcinoma, showing no abnormal radiotracer concentration after 2nd RAI therapy with 150mCi 131I

Her RET gene rearrangement assay was processed for Fluorescence in situ Hybridization (FISH); however, no FISH signals could be visualized for analysis.
Figure 2: RET gene rearrangement assay by FISH (Fluorescence in situ Hybridization), showing no FISH signals, indicating a negative test result.

Similarly, NTRK 1 gene arrangement (1q21.3) turned out to be negative with only 4% cells being abnormal (>15% abnormal cells are considered positive).
Figure 3: NTRK 1 gene arrangement by FISH method, showing only 4% abnormal cells.

On immunohistochemistry, her CD246 (ALK) marker was found to be negative as well.

Figure 4: Immunohistochemistry of CD246 (ALK) marker, shows negative findings.
PCR, Fragment analysis for Microsatellite instability (MSI), which is a sign of DNA mismatch repair (MMR) deficiency and presents as accumulation of mutations in DNA microsatellite (1-9 nucleotides), was stable with absence of any unstable loci.

<table>
<thead>
<tr>
<th>TEST NAME</th>
<th>Microsatellite Instability (MSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN INFORMATION</td>
<td>Received 01 paraffin block & stained slide labelled as 777/23. Received peripheral blood EDTA, collected on 21/07/2023.</td>
</tr>
<tr>
<td>CLINICAL HISTORY</td>
<td>Metastatic papillary thyroid carcinoma.</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td>CR, Fragment Analysis</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
</tr>
<tr>
<td>Test Details</td>
<td>Results</td>
</tr>
<tr>
<td>NR-21</td>
<td>Stable ✓</td>
</tr>
<tr>
<td>NR-24</td>
<td>Stable ✓</td>
</tr>
<tr>
<td>BAT-25</td>
<td>Stable ✓</td>
</tr>
<tr>
<td>BAT-26</td>
<td>Stable ✓</td>
</tr>
<tr>
<td>MOWO-27</td>
<td>Stable ✓</td>
</tr>
<tr>
<td>IMPRESSION</td>
<td>MSI-S (MSI-Stable)</td>
</tr>
</tbody>
</table>

INTERPRETATION

<table>
<thead>
<tr>
<th>Microsatellite instability</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI-H (MSI-High)</td>
<td>24% of the loci studied are unstable.</td>
</tr>
<tr>
<td>MSI-L (MSI-Low)</td>
<td><40% of the loci studied are unstable.</td>
</tr>
<tr>
<td>MSI-S (MSI-Stable)</td>
<td>None of the loci studied are unstable.</td>
</tr>
</tbody>
</table>

COMMENTS

1. This test examines instability of microsatellites as per National Cancer Institute guidelines.
2. The mononucleotide markers are quasi-monomorphic and used to determine MSI.
3. The profiles of the normal tissue (blood) have been compared to the tumor tissue to elucidate results.
4. Results are meant to be interpreted in context of clinical findings, and other laboratory data.
5. Genetic counseling is recommended.

In accordance with the negative findings of ALK, NTRK, and RET gene rearrangements and MSI results, the patient was first commenced on Lenvatinib in June 2023, which she continued for 3 months. Her biochemical findings, including a full blood count, hepatic enzymes, and renal function tests, were within normal limits at the start of treatment. After 3 months of treatment, a follow-up CT scan of the chest was done, which revealed further progression of the disease, characterized by numerous bilateral pulmonary lesions, with the largest one measuring about 4.2 x 2.7 cm. Consequently, a medical board comprising oncologists and internists was established in December 2023, and the patient’s medical history was thoroughly reviewed. The board recommended discontinuing Lenvatinib and beginning Cabozanitib instead.

Figure 5: Microsatellite instability (MSI)-S (Stable) was revealed following PCR.
DISCUSSION

The 2015 American Thyroid Association Management Guidelines suggested the following criteria as the definition of structurally evident radioiodine-refractory DTCs: (i) Metastatic tissue does not concentrate radioiodine; (ii) tumour tissue loses the ability to concentrate radioactive iodine after previous evidence of radioiodine-avid disease; (iii) radioiodine is concentrated in some lesions but not in others; and (iv) metastatic disease progresses despite a significant concentration of radioiodine (3). Recent advancements in the study of the genetic basis of papillary thyroid cancer demonstrated that the BRAF V600E mutation accounts for 60%, RAS for 15%, and receptor tyrosine kinase (RTK) accounts for 12% of these refractory cases (4). Radioiodine refractoriness is mainly related to the sodium iodide symporter (NIS) expression of thyroid cancer cells (5). RTK and MAPK pathways are crucial for thyroid-specific gene expression, including NIS. Radioiodine refractoriness is linked to MAPK pathway activation (6).

In January 2024, a repeated radioactive iodine whole body scan was conducted, and the results were consistent with the previous scan, indicating the absence of any abnormal focal or diffuse radiotracer uptake anywhere in the body. The patient was recommended to undergo a PET CT scan, but due to her poor physical condition, she was unable to comply. The patient is currently on Cabozanitib and has been scheduled for routine follow-up.

Figure 6: Follow-up ¹³¹I-Whole Body Scan, after treatment with Lenvatinib, showing no abnormal radiotracer accumulation anywhere in the body, apart from physiological uptake in the salivary glands, bowel & urinary bladder.
Disease-specific therapies block the MAPK pathway in thyroid cancers, but their effectiveness in improving overall survival is questionable due to factors like parallel signaling pathway activation and overexpression of certain tyrosine kinase receptors, which ultimately affect treatment responses (7).

In this case, initially the patient expressed radioiodine avidity and received radioiodine therapy twice thereafter. Despite that, further progression of the disease was noted, with a significant decline in radioactivity over time. Following RET, NTRK1 gene rearrangement, and MSI studies, Lenvatinib was prescribed. Regardless of the treatment, disease progression was obvious, in association with potential adverse events. The patient is currently being evaluated carefully and scheduled for 18F-FDG PET/CT.

The National Comprehensive Cancer Network® (NCCN®) has released Clinical Practice Guidelines for Thyroid Carcinoma, recommending multi-kinase inhibitors for treating recurrent, advanced, and metastatic disease not amenable to radioactive iodine therapy. These include Lenvatinib or Sorafenib as first-line drugs, Cabozanitib as second-line therapy, Larotectinib or Entrectinib for positive NTRK gene fusion, and Selpercatinib or Pralsetinib for positive RET gene fusion (8). However, adverse events are common in patients taking Lenvatinib and Sorafenib, including hypertension, fatigue, weight loss, diarrhea, and stomatitis. Remarkably, 18F-FDG PET/CT can identify radioactive refractory disease, with SUVmax greater than 4.0 predicting the absence of 131I avidity (10).

CONCLUSION

The reported case explores the use of immunological advancements in managing radioiodine refractory DTCs. While targeted therapies attenuate disease progression, they may not always provide overall survival benefits. Furthermore, the report emphasizes the importance of declaring DTCs as 'radioiodine refractory' for optimal initiation of immune therapy.

REFERENCES

