Role of 18F-FDG PET/CT in Follow up Patients with Rectal Carcinoma: Single Institute Based Study

1Papia Akhter, 2Shamim M F Begum, 3Md. Abu Bakker Siddique, 4Pupree Mutuddy, 5Tapati Mandal, 6Mohammad Sajjad-Al-Mishal, 7S. M. Arifur Rahman

2Assistant Professor & SMO, National Institute of Nuclear Medicine & Allied Sciences (NINMAS)
3Member, Planning Division, Bangladesh Atomic Energy Commission
4Professor & CMO, 5Associate Professor & PMO 7Medical Officer - NINMAS

Correspondence Address: Dr. Papia Akhter, Assistant Professor, NINMAS, Block-D, BSMMU, Shahbag, Dhaka-1000
Email: papia1078@gmail.com

ABSTRACT

Introduction: F-18 Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET/CT) is a hybrid non-invasive imaging tool that integrates PET and CT into a single imaging device. It is used to detect and measure metabolic activity in a cancer cell and, hence, can provide anatomic and metabolic information. 18F-FDG PET/CT is useful for the detection of loco-regional recurrence, distant metastases, and monitoring therapy response in patients with rectal carcinoma. This study was done to see the usefulness of 18F-FDG PET/CT in the follow-up evaluation of patients with rectal carcinoma.

Materials and Methods: This retrospective study was done in the PET/CT division of the National Institute of Nuclear Medicine & Allied Sciences (NINMAS) between January 2021 and December 2022. A total of 26 patients with rectal carcinoma, requested for an F-18 FDG PET-CT scan were enrolled in this study. Image findings were analyzed and properly documented in a pre-designed format to evaluate the results.

Results: Total 26 patients with an average age of 47.69 and a follow-up period of 6 months to 5 years were enrolled in this study. Histologically adenocarcinoma was seen in 21 patients, four patients were mucinous, two were papillary, and carcinoid tumor was found in one patient. On PET/CT imaging, no metastases were found in 17 (65.4%) out of 26 patients and metastases was seen in 9 (34.6%) patients. Among them four (44.4%) had lung, two (22.2%) had lymph nodes, one (11.1%) had liver and lymph node metastases, one (%11.1) had skeletal metastases, and one (11.1%) had peritoneal metastases. No significant association was observed with histopathology or treatment protocol. CEA was higher in patients with metastases and lower in those without.

Conclusion: 18F-FDG PET/CT is an effective tool in follow-up patients with rectal carcinoma as it can accurately detect locoregional recurrence or distant metastases.

Key words: Rectal carcinoma, F-18 FDG PET/CT, metastases, follow up.

INTRODUCTION

Colorectal cancer is the world’s third most common malignancy and the second leading cause of cancer-related death (1). In relation to incidence, in men it is behind lung and prostate carcinoma, and in women it is second after breast cancer. In relation to mortality, in men is behind lung, liver and stomach cancer and in female third in mortality following breast and lung carcinomas. Significant variation is seen in patients with rectal carcinoma like complete regression, stationary appearance, tumor progression during the treatment with variable rates of local recurrence (2,3).

Five-year survival rate is about 60% despite proper surgical management in combination with chemotherapy and radiotherapy. Prognosis is better when recurrences are detected early (4). 18F-FDG PET/CT scan which is a non-invasive imaging modality is an important tool for early detection of local recurrence, distant metastases, and evaluation of therapy response. It can detect metabolic changes of cancer cell due to chemo or radiotherapy better than other imaging modalities like CT or MRI (5). In addition to anatomical changes metabolic changes provide more predictive value. This study was done to see the follow up results of patients with rectal carcinoma and impact of 18F-FDG PET/CT in management of rectal carcinoma patients.

PATIENTS AND METHODS

This retrospective study was done in PET/CT division of National Institute of Nuclear Medicine & Allied Sciences (NINMAS). A total of 26 patients with rectal carcinoma were enrolled in this study who were referred to NINMAS from January 2021 to December 2022 for 18F-FDG PET/CT scan after obtaining proper permission. The study patients were informed about the nature and the purpose of the study. Confidentiality was maintained. Detailed history was taken. Data were
collected in a predesigned format and findings of the scans were evaluated.

Data processing and statistical analysis:

Collected data were analyzed using the Statistical Package for Social Sciences version 26.0 for Windows (SPSS Inc., Chicago, Illinois, USA). Quantitative data was provided as mean, standard deviations, and ranges. Chi-Square test was used to analyze the categorical variables. The confidence interval was set at 95% with a 5% acceptable margin of error. A P-value <0.05 was considered statistically significant.

RESULTS

A total of 26 patients were enrolled in this study (M = 13 and F = 13), with ages ranging from 22 to 78 (47.69 ± 17.59) years (Table 1). Follow up period ranged from six months to five years. Histologically, adenocarcinoma was seen in 21 patients. Four patients had mucinous adenocarcinoma, two patients had papillary adenocarcinoma, and a carcinoid tumor was found in one patient. Among the 26 patients, three came prior to surgery; one after adjuvant radiotherapy; two after adjuvant chemo and radiotherapy to see therapy response; and 23 came after surgery either for evaluation or to see therapy response. Surgery included a) anterior resection and low anterior resection (n=12) b) abdominoperineal resection (n=4) c) intersphincteric resection (n=2) d) resection and anastomosis (n=4) and e) Hartman procedure (n=1) (Table 1). No evidence of metastasis was found in 17 (65.4%) patients. Other 9 (34.6%) patients showed metastases in following locations: a) only lung (n= 1), b) lung and lymph nodes (n=2), c) lung and liver (n=1), d) lung, liver and lymph nodes (n=1) e) only lymph nodes (n=2) f) skeletal metastases (n=1) and g) peritoneal metastases (n=1) (Table 2). No significant association was seen in males or females with metastases or sites of metastases; liver metastases were seen more in females than in males. (Table 2). No statistically significant association of metastases was observed with histopathology or treatment protocols either (Table 3 & 4). CEA was found to be higher in patients with metastases and lower in patients who had no metastases (CEA average: 12.04 vs. 4.0).

Table-1: Demographic and disease characteristics of study subjects (n=26)

<table>
<thead>
<tr>
<th>Age</th>
<th>Range: 22 to 78 years</th>
<th>(47.69 ± 17.59)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>13</td>
</tr>
<tr>
<td>Histopathology</td>
<td>Adenocarcinoma</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Mucinous adenocarcinoma</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>Papillary adenocarcinoma</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Carcinoid tumor</td>
<td>01</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgical management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior resection and low anterior resection</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Abdominoperineal resection</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>Intersphincteric resection</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Resection and anastomosis</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>Hartman procedure</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>No surgery</td>
<td>03</td>
</tr>
<tr>
<td>Therapeutic management</td>
<td>Chemotherapy</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Radiotherapy</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>No therapy</td>
<td>02</td>
</tr>
</tbody>
</table>

Table-2: F-18 FDG PET/CT findings according to gender in follow up patients of rectal carcinoma

<table>
<thead>
<tr>
<th>Findings</th>
<th>Male</th>
<th>Female</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No metastases</td>
<td>09</td>
<td>09</td>
<td>1</td>
</tr>
<tr>
<td>Lymph node metastases</td>
<td>02</td>
<td>04</td>
<td>0.641</td>
</tr>
<tr>
<td>Liver metastases</td>
<td>01</td>
<td>03</td>
<td>0.586</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>02</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>Skeletal metastases</td>
<td>01</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>Peritoneal deposits</td>
<td>01</td>
<td>00</td>
<td>1</td>
</tr>
</tbody>
</table>

*Fisher exact test was done.

Table 3: Relation of histopathology and F-18 FDG PET/CT scan findings of patients with rectal carcinoma

<table>
<thead>
<tr>
<th>Findings</th>
<th>Adenocarcinoma (n=19)</th>
<th>Mucinous adenocarcinoma (n=4)</th>
<th>Papillary adenocarcinoma (n=2)</th>
<th>Carcinoid tumor (n=1)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No metastases</td>
<td>12</td>
<td>02</td>
<td>02</td>
<td>01</td>
<td>0.562</td>
</tr>
<tr>
<td>Lymph node metastases</td>
<td>04</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>0.839</td>
</tr>
<tr>
<td>Liver metastases</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>0.741</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>05</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>0.841</td>
</tr>
<tr>
<td>Skeletal metastases</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>0.943</td>
</tr>
<tr>
<td>Peritoneal deposits</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>0.943</td>
</tr>
</tbody>
</table>

*Chi-Square test was done.
Calculated SUV values from MATLAB. Spline cubic interpolation. It was clearly distinguished the nonlinear relation between the annotated SUV values and proper data and provide a better relation from those variables. Thus, this particular operation was placed to apply.

We can get the relationship between these response.

In our research, we built a code to express the within the tolerated range.

We have examined our result to correlate the calculated SUV with the annotated SUV consecutively in order to correlate our calculated SUV with the annotated SUV. The independent variable having

Table 1: Demographic and disease characteristics of study subjects (n=26)

<table>
<thead>
<tr>
<th>Findings</th>
<th>Chemotherapy (n=3)</th>
<th>Radiotherapy (n=5)</th>
<th>Combined chemo-radiotherapy (n=11)</th>
<th>No therapy (n=18)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No metastases</td>
<td>02</td>
<td>03</td>
<td>11</td>
<td>01</td>
<td>0.516</td>
</tr>
<tr>
<td>Lymph node metastases</td>
<td>00</td>
<td>00</td>
<td>04</td>
<td>01</td>
<td>0.427</td>
</tr>
<tr>
<td>Liver metastases</td>
<td>01</td>
<td>00</td>
<td>02</td>
<td>00</td>
<td>0.561</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>01</td>
<td>00</td>
<td>02</td>
<td>01</td>
<td>0.336</td>
</tr>
<tr>
<td>Skeletal metastases</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>0.927</td>
</tr>
<tr>
<td>Peritoneal deposits</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>0.927</td>
</tr>
</tbody>
</table>

*Chi-Square test was done.

DISCUSSION

Colorectal cancer is the third-leading cause of cancer worldwide. Recurrence occurs in roughly one-third of patients during the first two years after surgery (6). 18F-FDG PET/CT directly measures the metabolic activity of the cancer cell, thus playing a crucial role in the early detection of recurrence in patients with rectal carcinoma. It can detect metabolically active small LNs, local operative bed recurrence, small metastases, early skeletal deposits, and post-therapeutic evaluation of viable and non-viable malignant lesions.

This study was conducted on 26 patients with ages ranging from 22 to 78 years old and a mean SD of 47.69 ± 17.59; they were 13 females (50%) and 13 males (50%). Based on lesion analysis, metastases were seen in 9 cases (34.62%) of the patient group. The study almost agreed with Hetta et al., who analyzed 60 instances and discovered that 22 cases (36.7 percent of the total evaluated cases) developed a local recurrence, and 38 cases did not (63.3 percent of the total studied cases) (7,8).

In this study, the number of patients with local nodal involvement was 05 cases (19.23%). while 21 patients did not develop nodal metastatic deposits (80.77%). The findings are consistent with those of O’Connor et al., who found that on PET/CT, enlarged and non-enlarged FDG-positive lymph nodes can be seen in the mesentery, indicating the existence of regional lymph node
metastases; this is shown when patients with rectal carcinoma are restaged (8, 9). While the specificity of FDG PET is 96%, it has been demonstrated to be only 29% sensitive for local lymph node metastases from colorectal carcinoma (10,11). On PET/CT, enlarged and nonenlarged FDG-avid lymph nodes in the mesentery can be seen, indicating the existence of regional lymph node metastases; however, this is more frequently seen when CRC patients are restaged rather than when they are initially staged (12).

The end diagnosis of distant metastases in follow-up patients with rectal carcinoma was visible in nine individuals (34.62%) of the patient group based on lesion investigation. Patients with hepatic metastatic deposits accounted for 2 instances (7.7%); those with pulmonary nodular deposits accounted for 4 instances (15.39%); those with osseous deposits accounted for 1 instance (3.85%); and those with peritoneal deposits accounted for 1 instance (3.85%). So, 18F-FDG PET/CT was found useful in detecting hepatic and extrahepatic metastases. These findings are compatible with those of Kijima et al., who found that FDG-PET and PET/CT have high accuracy for the detection and staging of liver lesions in CRC patients, with a combined sensitivity and specificity of 93 percent (13). In this study, females had a higher rate of 18F-FDG PET/CT detection of lymph nodes and hepatic metastases than males, with p-values of 0.641, and 0.586 respectively. These findings are not statistically significant which could be due to the small sample size. Elia et al. in their study showed that females had a statistically significantly higher rate of PET/CT detection of recurrence, local spread, and local lymph nodes than males, with p-values of 0.018, 0.018, and 0.002, respectively, whereas there was no statistically significant relationship between gender of the studied patients and the other findings, which could be due to small sample size (9). This study is partially compatible with our study.

In this study, a higher rate of FDG PET/CT detection of metastases was seen in a patient with adenocarcinoma than in other histological types, though it was not statistically significant. Kijima et al. showed that the percentage of 18F-FDG PET/CT metastases detected in the adenocarcinoma group was statistically and significantly higher than in the mucinous group (65.4 percent, p-value = 0.014). In this study, nine patients with rectal carcinoma showed a higher CEA level (average 12.04), and 17 patients were without metastases; their average CEA level was 4.0. Mittal et al. (14), who studied 73 patients with CRC (55 males and 18 females; age range, 25 to 80 years), In 51 patients, rising CEA levels were found. 18F-FDG PET/CT scans were positive in 13 patients (3 with liver lesions, 5 with lymph node involvement, 2 with bone metastases, 1 with local recurrence in the urinary bladder wall, 1 with lymph node and liver metastases, and 1 with lymph node and bone metastases). 18F-FDG PET/CT is a viable approach in the evaluation of patients with rectal carcinoma and a normal CEA level who have a suspected recurrence or metastases (15).

CONCLUSION

The development of 18F-FDG PET/CT has a considerable role in the follow-up of patients with rectal carcinoma. 18F-FDG PET/CT has a greater impact on the detection of sites of metastatic disease, either hepatic or extrahepatic, and on the detection of local recurrence. 18F-FDG PET/CT alone can diagnose local recurrence due to abnormal FDG uptake, whereas serial conventional CTs are often required to characterize recurrence as they provide anatomical as well as metabolic details.

REFERENCES

significantly correlated with abnormal scans. But abnormal scans were patient each. In addition, two patients had left ventricular dysfunction score (SSS) value, most of the patients (four) had mild risk, whereas abnormal scans suggestive of myocardial ischemia or infarction. Four of 99mTc-sestaMIBI. A single-day stress–rest protocol with adenosine was patients have a high incidence of silent ischemia and MI due to ABSTRACT were done. For GSPECT-MPI, a one-day stress-rest and clinical examination of the patient, ECG, summed stress score (SSS), and summed difference defect, fixed perfusion defect, transient ischemic myocardial infarction (AMI), heart failure, arrhythmia, asymptomatic individuals (3, 4). An additional feature assessment of myocardial perfusion abnormality by programmed Statistical Package for Social Sciences see the effect of independent variables (age, sex, diagnostic modality being used for risk stratification and (14). Quantitative gated SPECT-MPI is a powerful asymptomtic diabetes have not only higher abnormal presence of subendocardial or balanced ischemia. In the study subjects were categorized by transient ischemia is associated with less extensive CAD. The observation in this study that patients with a history of silent myocardial ischemia in type 2 diabetic patients and the correlation with histopathologic and CT findings. Radiology. 1998 Mar;206(3):755-60. 11. M. Sadahiro S, Yasuda S, Ishida H, Tokunaga N, Tajima T, Makauchi H. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncology reports. 2000 Jan 1;7(1):85-92. 12. Elia RZ, Elbastaressy RA, Abdelmeguid HA, Bassioni AM. FDG PET/CT in follow UP patients with colorectal carcinoma after adjuvant chemotherapy. Egyptian Journal of Radiology and Nuclear Medicine. 2021 Dec;52:1-0. 13. Kijima S, Sasaki T, Nagata K, Utano K, Lefor AT, Sugimoto H. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World journal of gastroenterology: WJG. 2014 Dec 12;20(45):16964. 14. Mittal BR, Senthil R, Kashyap R, Bhattacharya A, Singh B, Kapoor R, Gupta R. 18F-FDG PET-CT in evaluation of postoperative colorectal cancer patients with rising CEA level. Nuclear medicine communications. 2011 Sep 1;32(9):789-93. 15. Chiewvit S, Jiranantakorn T, Apisarnthanarak P, Kanchaanaapiboon P, Hannanthawiyat C, Ubonmich K, Phongsawat N, Chiewvit P. Detection of recurrent colorectal cancer by 18F-FDG PET/CT comparison with contrast enhanced CT scan. J Med Assoc Thai. 2013 Jun 1;96(6):703-8.