

Hyponatremia in Acute Subarachnoid Hemorrhage: Frequency and Pathophysiology

DEY SK¹, BAKSHI L², SAYEM MNN³, MUZAHID MAA⁴, BULBUL S⁵,
MAZUMDER S⁶, SHAHIDULLAH M⁷

Abstract:

Background: Hyponatremia is the most common electrolyte abnormality seen in patients with aneurysmal SAH. Clinically significant hyponatremia (Serum Sodium <135 mEq/L) requires treatment and there is a paucity of outcome studies based on this.

Materials and Methods: This prospective study was undertaken in the Department of Neurology, BSMMU. Patients with aneurysmal subarachnoid hemorrhage (SAH) were selected for this study from 1st January 2020 to 31st October, 2022.

Results: A total of 64 patients were included in the study. Hyponatremia was observed in 24 (37.5%) patients. Among them, 14 (58.7%) developed hyponatremia within the first week after SAH. Serum osmolality was low in 70.8% of patients who developed hyponatremia. Urinary osmolality was also high for the same number (70.8%). Low serum osmolality and high urine osmolality were significantly ($p<0.05$) higher than that of normal values of serum and urine osmolality in hyponatremia patients.

Conclusion: Hyponatremia is common after subarachnoid hemorrhage. SIADH is the commonest cause of hyponatremia after subarachnoid hemorrhage.

Keywords: Aneurysmal subarachnoid hemorrhage, hyponatremia, SIADH.

Introduction:

Hyponatremia is the commonest electrolyte abnormality to occur after subarachnoid hemorrhage¹. One study showed that 19.6% of patients admitted with SAH developed significant hyponatremia². Hospital stay is longer in patients who developed hyponatremia, which suggests that appropriate treatment of hyponatremia could reduce duration of admission, as well as diminish the likelihood of associated morbidity and mortality. The etiology of hyponatremia after SAH is diverse and includes syndrome of inappropriate antidiuretic hormone secretion (SIADH), cerebral salt wasting syndrome (CSWS), acute ACTH/glucocorticoid deficiency, excessive fluids, and diuretic therapy. So, appropriate therapy must be targeted to the correct etiology to restore eunatremia³. However, there is

considerable dispute as to which of these diverse etiologies most commonly cause hyponatremia after SAH. A number of small studies have suggested that cerebral salt wasting syndrome (CSWS)^{4,5,6,7} is the most common cause due to the finding that, plasma atrial natriuretic peptide (ANP)^{4,6} and brain natriuretic peptide (BNP)⁸ concentrations both rise after SAH. However, these studies were all small and underpowered. In contrast, recent data have suggested that the presence of elevated plasma BNP concentrations could not be regarded as a reliable predictor of either blood volume status or the development of hyponatremia⁹. Elevated plasma BNP concentrations may therefore not necessarily mediate the development of hyponatremia.

1. Dr. Subash Kanti Dey, Professor, Stroke and interventional Neurology Division, Department of Neurology, BSMMU.
2. Dr. Lipy Bakshi, Associate Professor, Department of Obstetrics and Gynaecology, Dhaka National Medical College.
3. Md. Noor Nabi Sayem, Data analyst, Department of Epidemiology & Research, National Heart Foundation Hospital and Research Institute.
4. Dr. Md. Abdullah Al Muzahid, Assistant Professor, Stroke and interventional Neurology Division, Department of Neurology, BSMMU.
5. Dr. Shahida Bul Bul, Assistant Professor, Department of Neurology, BSMMU.
6. Dr. Sukumar Mazumder, Assistant Professor, Department of Neurology, Rangpur Medical College.
7. Dr. Md. Shahidullah, Professor, Stroke and interventional Neurology Division, Department of Neurology, BSMMU.

Two retrospective studies have failed to substantiate cerebral salt wasting as a cause of anything more than a minority of cases of hyponatremia after SAH and strongly support SIADH as the predominant cause of hyponatremia². These studies are at variance with those derived from a recent retrospective study of similar size, where 35.4% of severe hyponatremia (<130mmol/L) was considered to be due to SIADH, with a substantial proportion; 22.9%; considered to be secondary to CSWS¹⁰. However, the patient cohort had more severe SAH than in our study and only those patients with plasma Na <130 mmol/L were analyzed in detail. Most patients in this study also developed hyponatremia more than 7 days after SAH, which is later than the natural history of hyponatremia¹⁰. So, the two largest studies to date are not comparable due to fundamental difference in cohort and methodology. It is now apparent that acute ACTH deficiency is more common than previously recognized after neurosurgical insult¹¹. Data from patients who have sustained traumatic brain injury (TBI) reveals that life-threatening hyponatremia¹² and hypotension may require pressor support¹³. Recent studies^{14,15} had found that, between 7.1% and 12% of patients became cortisol deficient immediately after SAH. Both of these studies were prospective but small, and

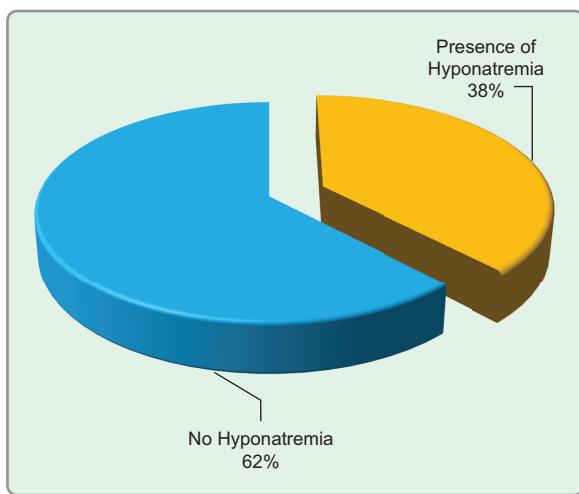
analysis of cortisol dynamics was taken place at a single point after SAH. It has been shown that plasma cortisol levels fluctuate significantly after other intracerebral insults such as TBI¹, so transient cortisol deficiency may have been missed, leading to an underestimation of the true frequency of acute cortisol deficiency. It is likely that at least some of those who develop hyponatremia after SAH are suffering from acute ACTH deficiency due to pituitary injury.

Materials and Methods:

This study was conducted in Department of Neurology, BSMMU from 1st January 2020 to 31st October 2022. A total 64 patients with non-traumatic subarachnoid hemorrhage were enrolled in this study. Informed written consent was taken from all patients or attendants. Clinically suspected subarachnoid hemorrhage patients were confirmed by plain CT scan of brain. To locate the aneurysm CTA of brain or Cerebral DSA were done. Serum electrolytes of all selected patients were done. Those who had hyponatremia (serum sodium level < 135 mmol/l); both serum and urinary osmolality were done to evaluate the causes of hyponatremia.

Result:

Table-I
Distribution of demographic variables and history of patients with hyponatremia


Variables	Hyponatremia		p value
	Yes	No	
Age (years)	N (%)		
≤45 years	5 (33.3)	10 (66.7)	
45-60 years	10 (28.6)	25 (71.4)	
>60 years	9 (64.3)	5 (35.7)	
Mean ± SD	54.08 ± 2.57	50.33 ± 1.99	0.252 ^c
Sex category			
Male	10 (34.5)	19 (65.5)	0.650 ^a
Female	14 (40.0)	21 (60.0)	
Hypertension	10 (41.7)	14 (58.3)	0.594 ^a
DM	11 (73.3)	4 (26.7)	*0.001 ^a
Smoking	1 (10.0)	9 (90.0)	0.076 ^b
Family history	0 (0)	2 (100.0)	0.524 ^b
Drug abuse	0 (0)	1 (100.0)	0.999 ^b

^aChi-squared test was done to measure the level of significance.

^bFisher's Exact test was done to measure the level of significance.

^cUnpaired t test was done to measure the level of significance.

* Significant, Figure within parenthesis indicates percentage.

Fig.-1: Pie chart showing prevalence of hyponatremia in aneurysmal SAH patients.

Table-II
Time delay of Hyponatremia development from the ictus

Hyponatremia development within	Frequency	Percentage
1 st week of ictus	14	58.3
2 nd week of ictus	10	41.7
Total	24	100.0

Table-III
Distribution of location of aneurysm of the patients with hyponatremia

Location aneurysm	Hyponatremia		p value
	Yes	No	
ACOM	10 (50.0)	10 (50.0)	0.197 ^a
PCOM right	4 (66.7)	2 (33.3)	0.999 ^b
MCA right	2 (22.2)	7 (77.8)	*0.018 ^b
MCA left	0 (.0)	3 (100.0)	0.057 ^b
Basilar	0 (.0)	2 (100.0)	0.154 ^b

^aChi-squared test was done to measure the level of significance.

^bFisher's Exact test was done to measure the level of significance.

* Significant,

Figure within parenthesis indicates percentage.

Table-IV
Distribution of serum osmolality and urine osmolality of the patients with hyponatremia

Variables	Low	High	Normal	p value
Serum osmolality	17 (70.8)	-	7 (29.2)	*<0.001
Urine osmolality	-	17 (70.8)	7 (29.2)	*<0.001

One proportion z test was done to measure the level of significant.

* Significant

Figure within parenthesis indicates percentage.

Discussion:

In the present study, among 64 patients with subarachnoid hemorrhage, 24 (37.5%) patients developed hyponatremia (serum sodium < 135mmol/l). Among them 14 (58.3%) patients developed hyponatremia within the 1st week of ictus, while 10 (41.7%) patients developed within the 2nd week of ictus. In a study conducted in 2013, the incidence of hyponatremia was 37% among 59 patients¹⁶. But another study conducted in Ireland revealed 49% of their patients developed hyponatremia¹⁷. They also found that, 85.7% of their patients developed hyponatremia within first week of ictus, while the rest (14.3%) developed in the second week of ictus¹⁷. Another study found 68.2% patients developed hyponatremia within first week (31.8%) developed in the second week². So, the overall pattern is most of the patients develop hyponatremia within the first week of SAH; which is consistent with our study.

In our study 45- 60 years group mostly suffered from SAH, male to female ratio of 1:1.2. Previous study showed median age group was 53 years and male to female ratio was 1:0.89¹⁷. In another study, the mean age was 50.5 years¹⁶. They also found the male to female ratio as 1:0.97¹⁶. The age group of our study matches but sex category varies from some previous studies.

As aneurysm in SAH is more common in the anterior circulation, most of our patients (97%) had aneurysm in the carotid system. Aneurysm location may potentially influence the severity of hyponatremia as the carotid system is related to the hypothalamic-pituitary-adrenal axis¹⁸. But multiple studies failed to connect any possible connection between hyponatremia and location of

aneurysm^{1,2,16,18}. So, further studies may address this issue.

In our study, among the 24 patients who suffered from hyponatremia 17 (70.8%) patients suffered from SIADH, as evidenced by presence of high urinary osmolality in presence of hypotonic plasma and absence of other contributing factors. SIADH was the predominant cause of hyponatremia in SAH in many previous studies like 62.9%², 63.6%¹⁷. But, SIADH must be differentiated from other causes of hyponatremia, especially cerebral salt wasting syndrome, as treatment modality depends upon the volume status of the patient.

The limitation of our study is that it was done at a single institute. Being a tertiary level referral institute, many patients reached the institute many days/months after the initial symptoms.

Conclusion:

Hyponatremia is a common systemic complication after acute subarachnoid hemorrhage. Among the different pathophysiology of hyponatremia SIADH is the most common.

References:

1. Hannon MJ, Crowley RK, Behan LA, O'sullivan EP, O'Brien MM, Sherlock M, Rawluk D, O'dwyer R, Tormey W, Thompson CJ. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. *The Journal of Clinical Endocrinology & Metabolism*. 2013 Aug 1;98(8):3229-37.
2. Sherlock M, O'Sullivan E, Agha A, Behan LA, Rawluk D, Brennan P, Tormey W, Thompson CJ. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. *Clinical endocrinology*. 2006 Mar;64(3):250-4.
3. Hannon MJ, Finucane FM, Sherlock M, Agha A, Thompson CJ. Disorders of water homeostasis in neurosurgical patients. *The Journal of Clinical Endocrinology*. 2012 Feb 22;97(5):1423-33.
4. Kurokawa Y, Uede T, Ishiguro M, Honda O, Honmou O, Kato T, Wanibuchi M. Pathogenesis of hyponatremia following subarachnoid hemorrhage due to ruptured cerebral aneurysm. *Surgical neurology*. 1996 Nov 1;46(5):500-8.
5. Wijdicks EF, Vermeulen M, Hijdra A, Van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful?. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*. 1985 Feb;17(2):137-40.
6. Isotani E, Suzuki R, Tomita K, Hokari M, Monma S, Marumo F, Hirakawa K. Alterations in plasma concentrations of natriuretic peptides and antidiuretic hormone after subarachnoid hemorrhage. *Stroke*. 1994 Nov;25(11):2198-203.
7. Palmer BF. Hyponatraemia in a neurosurgical patient: syndrome of inappropriate antidiuretic hormone secretion versus cerebral salt wasting. *Nephrology Dialysis Transplantation*. 2000 Feb 1;15(2):262-8.
8. Berendes E, Walter M, Cullen P, Prien T, Van Aken H, Horsthemke J, Schulte M, von Wild K, Scherer R. Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. *The Lancet*. 1997 Jan 25;349(9047):245-9.
9. Dorhout Mees SM, Hoff RG, Rinkel GJ, Algra A, van den Bergh WM. Brain natriuretic peptide concentrations after aneurysmal subarachnoid hemorrhage: relationship with hypovolemia and hyponatremia. *Neurocritical care*. 2011 Apr;14:176-81..
10. Kao L, Al-Lawati Z, Vavao J, Steinberg GK, Katzenelson L. Prevalence and clinical demographics of cerebral salt wasting in patients with aneurysmal subarachnoid hemorrhage. *Pituitary*. 2009 Dec;12(4): 347-51.
11. Hannon MJ, Sherlock M, Thompson CJ. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage-In "Endocrine Management in the Intensive Care Unit". *Best practice & research Clinical*

endocrinology & metabolism. 2011 Oct 1;25(5):783-98.

12. Agha A, Sherlock M, Thompson CJ. Post-traumatic hyponatraemia due to acute hypopituitarism. *Qjm*. 2005 Jun 1;98(6):463-4.
13. Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, Swerdloff R, Vespa P, Muizelaar JP, Cryer HG, Christenson PD. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. *Critical care medicine*. 2005 Oct 1;33(10):2358-66.
14. Klose M, Brennum J, Poulsgaard L, Kosteljanetz M, Wagner A, Feldt Rasmussen U. Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. *Clinical endocrinology*. 2010 Jul;73(1):95-101.
15. Parenti G, Cecchi PC, Ragghianti B, Schwarz A, Ammannati F, Mennonna P, Di Rita A, Gallina P, Di Lorenzo N, Innocenti P, Forti G. Evaluation of the anterior pituitary function in the acute phase after spontaneous subarachnoid hemorrhage. *Journal of endocrinological investigation*. 2011 May;34(5):361-5.
16. Sadanand S, Shivakumar P, Girish N, Loganathan S, Bagepally BS, Kota LN, Reddy NN, Sivakumar PT, Bharath S, Varghese M. Identifying elders with neuropsychiatric problems in a clinical setting. *Journal of Neurosciences in Rural Practice*. 2013 Dec;4(S 01):S24-30.
17. Hannon MJ, Behan LA, O'Brien MM, Tormey W, Ball SG, Javadpur M, Sherlock M, Thompson CJ. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. *The Journal of Clinical Endocrinology & Metabolism*. 2014 Jan 1;99(1):291-8.
18. Mapa B, Taylor BE, Appelboom G, Bruce EM, Claassen J, Connolly ES. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. *World neurosurgery*. 2016 Jan 1;85:305-14.