The Potential Effect of *Mucuna pruriens* Seed Extract on Sperm Quality
experimental study on mice exposed to cigarette smoke

Meidona Nurul Milla¹, Yani Istadi², Vania Shaula³, Deastri Anjeas Wari⁴, Chntyia Dwi Cahyani Puspitasari⁵, Umar Usman bin Sef⁶

Abstract

**Background:** Infertility has been more common problems among couple of reproductive age. One of the factors causing this disorder is unhealthy environmental factors including exposure to cigarette smoke. Polynuclear aromatic hydrocarbons (PAHs) in cigarette smoke can cause testicular atrophy, while the free radicals can inhibit the stages of spermatogenesis, and nicotine in cigarettes affects the brain dopamine levels affecting the levels of GnRH, and subsequently affect the levels of FSH and LH needed in spermatogenesis. The use of *Mucuna pruriens* seed extract containing antioxidants and L-dopa is expected to improve the quality of sperm after exposure to cigarette smoke. **Objective:** This study aimed to determine the effect of *Mucuna pruriens* seed extract on the sperm quality in mice exposed to cigarette smoke. **Methods:** This study was an experimental study with a post test only control group design. A total of 20 mice were divided into 4 groups of five mice each. All groups were exposed to cigarette smoke. Group 1 was the negative control exposed to cigarette smoke. Groups 2, 3, 4 were exposed to cigarettes smoke and given *Mucuna pruriens* seed extracts at the dose of 250; 300; and 350 mg/Kg BW/day. Parameters of sperm quality included concentration, morphology, motility and viability. **Results:** Post hoc tests showed there were significant differences among treatment groups. **Conclusion:** the administration of *Mucuna pruriens* seed extract affects the sperm quality of BALB/c mice exposed to cigarettes smoke.

**Keywords:** cigarette smoke; *Mucuna pruriens* seed extract; sperm quality

Introduction

About 12-15% of couples of reproductive age have problems to conceive and produce offspring in which 20-40% are due to male factors. One of the causes of fertility disorders in men is unhealthy environmental conditions that directly or indirectly affect the sperm quality. The unhealthy environment can be caused by exposure to cigarette smoke. Earlier study showed that after 30 days of exposure to cigarette smoke sperm quality significantly decreased. This is due to the components of cigarette smoke affecting the male reproductive system. Free radicals in cigarette smoke may cause oxidative stress in the male reproductive system, disrupting spermatogenesis, the nicotine reduce brain dopamine levels leading to reduced brain Gonadotropin-releasing hormone (GnRH) levels required in the secretion of LH and FSH hormones needed in the process of sperm production, and Polynuclear Aromatic Hydrogen (PAH) can

1. Meidona Nurul Milla
2. Yani Istadi
3. Vania Shaula
4. Deastri Anjeas Wari
5. Chntyia Dwi Cahyani Puspitasari
6. Umar Usman bin Sef
   Department of Anatomy, Faculty of Medicine, UNISSULA, Semarang, Indonesia

**Correspondence to:** Meidona Milla, Department of Anatomy, Faculty of Medicine, UNISSULA, Semarang, Indonesia. E-mail: meidonamilla@gmail.com
cause testicular atrophy.\textsuperscript{5,6} Shukla stated the \textit{Mucuna pruriens} seeds contained L-dopa compounds and antioxidants. The content is expected to neutralize the effects of oxidative stress and decrease dopamine due to exposure to cigarette smoke.\textsuperscript{7,8} Another study by Pradipta and Winarni et al. showed that administration of \textit{Mucuna pruriens} seed extract improves the sperm quality in normal mice.\textsuperscript{9,10} However, there have been no studies on the effect of seed extract of \textit{Mucuna pruriens} on the condition of spermatozoa after cigarette smoke exposure. This study specifically was aimed to determine the effects of \textit{Mucuna pruriens} seed extract on the concentration, morphology, quality, and viability of sperm in mice exposed to cigarette smoke.

\textbf{Material and Methods}

This laboratory experimental research method was done by post test randomized control group design. A total of 20 male BALB/c mice aged 2 months weighing 20-30 grams were adapted for one week before being randomized into 4 groups, of 5 mice each. All groups were exposed to smoke from 1 cigarette per day, for 30 days. Group 1 was negative control group which was given cigarette smoke exposure only, while group 2, 3 and 4 were given Mucuna pruriens seed extract at different doses for 30 days along with cigarette smoke. Group 2 was given Mucuna pruriens seed extract at a dose of 250 mg / kg, group 3 was given \textit{Mucuna pruriens} seeds at the dose of 300 mg/kg, group 4 was given \textit{Mucuna pruriens} seed extract at a dose of 350 mg / kg. All groups were given standard diet and drink every day.

\textit{Mucuna pruriens} seed extract were obtained from 500 grams fresh \textit{Mucuna pruriens} seeds that were boiled for 30 minutes, continued with soaked for 24 hours in water, and dried using 60\degree Celsius oven for 5 hours. Dried seeds were mashed up into powder shape and weighed. Seed powder was continued to be extracted using ethanol solvent and water in 1:1 comparison resulting in 5.8 grams seed extract. This extract was then aliquot for the treatment doses.

At the end of the treatment the experimental animals were terminated using cervical dislocation and sperm samples were taken from epididymis and subjected to the evaluation of concentration, morphology, motility and viability.

The sperm concentration was examined using haemocytometer with 10 times dilution and evaluated under microscope using 400 time magnification. While sperm morphology was assessed under microscope using giemsa smear. Sperm motility was directly observed under 400 times magnification under microscope and recorded using optilab camera. Viability of the sperm was evaluated under microscope on sperm smeared with eosin negrosin smear to distinguish the dead and alive sperm.\textsuperscript{11} Data on sperm quality were presented in images. The data scoring tested by Shapiro Wilk, the normal distribution of data followed by a different test of ANOVA, and not normally distributed data were analyzed using different test of nonparametric Kruskal Wallis test.

\textbf{Ethical clearance:} The study was approved by the Ethical Review Committee Board of Faculty of Medicine, UNISSULA, Semarang, Indonesia.

\textbf{Results}

Sperm quality was measured by measuring 4 parameters, concentration, morphology, motility and viability. At the end of the study the following results are obtained.

\textbf{Sperm Concentration}

The results of observing the concentration of spermatozoa between treatment groups are shown in the following figure:

The highest mean sperm concentration (58.4x10^5 / ml) was found in group 3 who received \textit{Mucuna pruriens} seed extract at a dose of 300 mg / kgBW / day. The One way ANOVA test results show a $p$ value of 0.0000 indicating that there were significant differences between treatment groups. Furthermore, the LSD post hoc test showed the following results:
Table 1. Mean number of sperm concentration

<table>
<thead>
<tr>
<th>Group (I)</th>
<th>group (II)</th>
<th>P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Group 2</td>
<td>0.105</td>
<td>not significant</td>
</tr>
<tr>
<td>Group 2</td>
<td>Group 3</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td>Group 3</td>
<td>Group 4</td>
<td>0.006</td>
<td>significant</td>
</tr>
<tr>
<td>Group 2</td>
<td>Group 3</td>
<td>0.001</td>
<td>significant</td>
</tr>
<tr>
<td>Group 3</td>
<td>Group 4</td>
<td>0.164</td>
<td>Not significant</td>
</tr>
<tr>
<td>Group 3</td>
<td>Group 4</td>
<td>0.022</td>
<td>significant</td>
</tr>
</tbody>
</table>

Sperm Morphology

Pictures below show the sperm morphology in each groups

Figure 4.3. The mean sperm morphology in various treatment groups
The highest number of morphologically normal spermatozoa was found in group 3; with a dose of *Mucuna pruriens* seed extract 300 mg / kgBW/day (72%). Statistical tests using the Kruskal Wallis showed morphological differences between various treatment groups (p 0.002), with significant differences found in the groups as follows:
The Potential Effect of Mucuna pruriens Seed Extract on Sperm Quality experimental study on mice exposed to cigarette smoke

Table 4.1. Mann - Whitney Test Results

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&gt;II</td>
<td>0.401</td>
<td>Not significant</td>
</tr>
<tr>
<td>I&gt;III</td>
<td>0.009 *</td>
<td>Significant</td>
</tr>
<tr>
<td>I&gt;IV</td>
<td>0.009 *</td>
<td>Significant</td>
</tr>
<tr>
<td>II&gt;III</td>
<td>0.009 *</td>
<td>Significant</td>
</tr>
<tr>
<td>II&gt;IV</td>
<td>0.009 *</td>
<td>Significant</td>
</tr>
<tr>
<td>III&gt;IV</td>
<td>0.530</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

Description: * = mean differences between the two groups are significant

Sperm Motility

The results of sperm motility are illustrated in the figure as follows:

The highest mean number of motile spermatozoa was found in group 4, with the dose of Mucuna pruriens seed extract of dose 350 mg/kg BW/day (54.98%). The results of the one way ANOVA statistical test showed significant differences in the various treatment groups (P <0.000), and advanced post hoc tests showed different groups as follows:

Table IV.4. Post hoc LSD

<table>
<thead>
<tr>
<th>Comparison of treated groups</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>Mucuna pruriens 250mg</td>
<td>0.011 Significant</td>
</tr>
<tr>
<td>Mucuna pruriens 300mg</td>
<td>0.000 Significant</td>
</tr>
<tr>
<td>Mucuna pruriens 350mg</td>
<td>0.000 Significant</td>
</tr>
</tbody>
</table>

Mucuna pruriens 250mg Mucuna pruriens 300mg 0.092 Not Significant
Mucuna pruriens 350mg Mucuna pruriens 350mg 0.004 Significant

Description: * = difference in mean between two significant groups

Sperm Viability

Pictures below show the difference of dead and alive sperm after eosin negrosin smearing.

The following graph shows the calculation of the mean number of viable sperm of spermatozoa in BALB/mice in each treatment group

The sperm viability for each treatment group was as follow: Group 1 25.6%, group 2 44 %, group 3 was 51,2% while group 4 was 61,4%. Kruskal Wallis test showed p value of 0,001, and post hoc test declared that there were significant differences among group 1 with group 2,3, and 4. Furthermore significant
difference was also presented between group 2 and 4 (p=0.009), and group 3 and 4 (p=0.009)

**Discussion**

Based on sperm quality parameters, including viability, concentration, morphology and motility, it can be concluded that *Mucuna pruriens* seed extract affects the quality of sperm in Balb/C mice exposed to cigarettes smoke. Based on the results of data of the statistical analysis, the lowest mean percentage of sperm motility of male BALB/c mice was found in the negative control group, namely the group exposed to cigarette smoke for 30 days without the provision of *Mucuna pruriens* seed extract. This study shows that exposure to cigarette smoke results in decreased sperm motility in male BALB/c mice. This occurs because of cigarette smoke containing free radicals and nicotine. The presence of free radicals contained in cigarette smoke affects the decrease in antioxidants in cement. If the amount of free radicals exceeds the antioxidants in cement, oxidative stress will occur. The presence of nicotine is a component of cigarette smoke particles that is harmful to male reproduction. Substance in nicotine has a direct effect on dopamine; by way of nicotine circulated to the brain it will trigger the release of dopamine. Decreasing dopamine levels will cause disruption of the process of spermatogenesis by inhibiting GnRH expenditure. GnRH affects the decrease in testosterone production, because it cannot stimulate the release of LH and FSH hormones. FSH, LH, and testosterone hormones work synergistically in the process of spermatogenesis. Decreasing the FSH, LH, and testosterone will interfere with the process of spermatogenesis.

Seed extracts of *Mucuna pruriens* contains flavonoids as antioxidants and L-dopa content that helps in the process of increasing the sperm quality. The presence of flavonoids that have antioxidant effects serves to overcome the damage caused by oxidation. and the content of L-dopa which will increase the dopamine level to support the process of spermatogenesis. The parameter related to sperm viability are the sperm motility, in which low viability will produce immotile sperm. In the seed extract with the highest dose of 350 mg/kgBW/day showed the highest mean of viability and motility. As for concentration and morphology parameters, the highest mean was obtained in the group treated with 300 mg/kg BW/day (group 3).

The administration of *Mucuna pruriens* seed extract effect the quality of sperm in BALB/c mice exposed to cigarette smoke.

**Funding Statement**

This research was funded by the Faculty of Medicine, Sultan Agung Islamic University

**Conflict of Interest**

The authors declares that there is no conflict of interest regarding the publication of this paper

**Authors’ Contribution:**

Data gathering and idea owner of this study: Meidona Nurul Milla, Yani Istadi

Study design: Meidona Nurul Milla, Yani Istadi

Data gathering: Vania Shaula, Umar Usman bin Sef, Deastri Anjeas Wari, Chntyia Dwi Cahyani Puspitasari

Writing and submitting manuscript: Meidona Nurul Milla

Editing and approval of final draft: Meidona Nurul Milla,
The Potential Effect of Mucuna pruriens Seed Extract on Sperm Quality experimental study on mice exposed to cigarette smoke

References:
19. Mulyani, L. Benefit and Content of velvet beans (Mucuna pruriens L.) as herbal medicine, Prosiding Farmasi, 2016, 2(2) pp. 351-357.