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Introduction
People all over the world are now living longer than 
before, mainly due to the improvement in the health 
sector, treatment of infectious diseases and possibly 
better nutrition 1.   Ageing is a complex and adaptive 
process characterized by diminished homeostatic 
response resulting from accumulated physiologic, 
biochemical, psychological and social wear on the 
organism overtime 2 that leads to morbidity and 
mortality 3. According to Strechler and Mildvan, 
ageing is defined as universal, progressive, intrinsic 
and degenerative process.4 

The term oxidative stress was first used in 
1950 by researchers who described the toxic effects 
of ionizing radiation, free radicals and oxygen 5 and 
the cumalative adverse effects of such processes 
responsible for the phenomenon of ageing 6. Oxidative 
stress has been correlated to ageing and many other 
conditions such as Alzheimer disease, cardiovascular 
disease, diabetes, Parkinson’s disease, Huntington’ 
s disease, cataract and cancers 7-11. There are many 
theories of the aging process, but they can be classified 
into evolutionary   and physiologic. Physiological 
processes that may explain ageing include oxidative 
stress, immunologic, neuroendocrinologic, metabolic 
, insulin signalling and caloric restriction. According 
to the theory of evolution, natural selection declines 

with age.12 This theory suggests that ageing will 
result from accumulation of multiple unrepaired 
faults . The Disposable soma theory 13 also resembles 
antagonistic pleiotropy, but differs from the latter in 
terms of resource allocation between reproduction 
and somatic maintenance. The free radical theory of 
ageing is the most updated theory and the concept of 
free radicals playing a role was described by Harman 
1956 7. Elevations in the levels of oxidizing species 
generation from phagocytes without a concomitant 
rise in the reducing power was shown starting at age 40 
in spite of marked fall in the reducing power starting 
at only year 50 14. Oxidative stress has been associated 
with atherosclerosis and cardiovascular disease 15, 
schizophrenia or atlentran deficit hypersensitivty 
disease 16. Although the oxidative stress hypothesis 
of aging continues to be related to pathophysiological 
alterations , yet it is also a subject of ongoing debate 
17. Much controversy regarding the role of reedox
homeostasis in ageing is based on the fact that most 
research on ROS dependent mechanisms has been 
done on species which are relatively short lived . 
But researchers in favour of this oxidative stress 
theory 18 focus on phylogenetically diverse species 
with extreme longevity and identifying the causative 
mechanisms   making them differentiated from short 
lived related species 19. Although the ageing process 
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seems to be similar among mammalian species, yet 
the state of ageing differs remarkably from short 
lived species such as mice (which live upto 4 yrs of 
age) to humans (who may live more than 100  yrs) 
or certain whale species, which may live multiple 
centuries 20. Previous studies proved to be markedly 
useful in comparing the oxidative stress hypothesis 
of ageing in mammalian and avien species 21, 22.
Many ROS species are involved in oxidative damage 
in cells causing   modification of the free radical 
theory of ageing 23. Long lived species have  shown 
reduced oxidative damage 24, reduced mitochondrial 
ROS production 25,26, increased antioxidant defenses 
27-29 and increased resistance to oxidative stress  both 
in vivo and in vitro 30-32. However, some studies 
have shown that there is no correlation between 
oxidation with life span or even longer life span has 
been correlated with increase in oxidative stress 33-

35. The results of life span studies from invertebrate
models have been confusing so that some models 
show significant alterations in life span, but others 
may not show .complex alteration.36,37. However, 
over expression of these antioxidants might extend 
the life span of this model organism 38. On the 
other hand, superoxide dismutase in roundworm C. 
elegans may not show any change in lifespan or may 
show increased life span, although the sensitivity 
of worms to oxidative stress is increased and the 
accumulation of oxidized proteins is enhanced 39-41. 
In Drosophilia, over expression of these enzymes and 
various antioxidants such as catalase, thioredoxin and 
methionine sulfoxide reductase has either enhanced 
the life span or had no effect 42-45.
The life span in females and males is also different. 
Jose Vina et al 46have shown that females live longer 
than males. Borras C in their study47 in mice and 
rats have shown that mitochondria from female rats 
produce about half the amount of H2O2 as compared 
to male rats. Moreover, ovarian hormones such 
as estrogens have correlation with mitochondrial 
H2O2 production.   However, with the estrogen 
replacement therapy, the observed increase in H2O2 
production as a result of ovariectomy was totally 
abolished. Estradiol upregulates GPX and Mn-SOD 
expression mediated by NFĸB 48. Various workers 
have shown that the expression of NADPH oxidase 
is higher among males than females and this leads 
to increased NADPH oxidase dependent superoxide 
anion formation in males as compared to females in 
the aorta 49,50 and in the cerebral vasculature 51. Pinto 
et al 52 reported that glutathione peroxidase activity 
was higher in females than males. But these authors 

did not relate this fact to the different longevity 
between males and females. Molecular expression 
of glutathione peroxidase gene is markedly low in 
males as compared to females 53.
Regarding survival (repair) responses to oxidative 
stress and ageing, several DNA repair systems 
have been developed depending upon various DNA 
lesions. 54. In humans and mice, mutations in certain 
DNA repair genes cause phenotypes of ageing 55-57. 
The capacity of base excision repair declines with 
aging, accompanied by decrease in the activity of 
8-oxoguanine-DNA glycosylase (Ogg1). As a result, 
8-oxoguanine lesions accumulate with ageing. 58
In mammalian cells, heat shock proteins (HSP) is 
synthesized on exposure to oxidative stress after the 
heat scock response is activated and translocated to 
the nucleus of one or more heat shock transcription 
factors. These factors control the expression of a set 
of genes encoding cytoprotective HSP 59. The HSP 
expression increases with ageing in rats in response 
to age associated accumulation of protein damage by 
oxidation.60. 
Regarding methylglyoxal, high levels can increase 
ROS production and cause oxidative stress. 
Methylglyoxal, is a highly recative electrophilic and 
β-dicarbonyl aldehyde compound formed mainly 
during glycolysis 61,62. Plasma methylglyoxal are 
increased in diabetes 63. Increased methylglyoxal 
and other reactive aldehydes like glyoxal and 
3-deoxyglucosome (3-DG) leads to carbonyl overload 
and stress 64 in many candidates like hypertension 65, 
atherosclirosis 66, diabetes 67, and neurodegenetive 
disease 68. But studies 69 in hypertensives   have 
shown the increased MG formation could be due to 
increased production rather than reduced degredatio 
. Activity of the glyoxalase system depends   on  
adequate levels of GSH 70. However MG makes cells 
more sensitive to oxidative stress by depleting GSH 
71 & oxidative stress also depletes GSH 72. MG leads 
to increased production of superoxide and oxidative 
stress 73 through its actions on mitochondria, provide 
ATP for body use and also generate about 85% of 
toatal intracellular superoxide during the process of 
energy production 74. A study by KM Desai et al 75 
has shown that MG causes mitochondrial oxidative 
stress by increasing the generation of mitochondrial 
superoxide, nitric acid and peroxynitrite and also the 
activities of Mn-Sod and complex III are significantly 
reduced by MG. MG can also cause oxidative stress 
indirectly through generation of most intracellular 
and extracellular AGES 76. Advanced glycation end 
produces (AGES) are also correlated to ageing, 
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diabetes, inflammation and neurodegeneration 77 
AGES also contribute to many other chronic diseases 
like nephropathy, vascular disease, amilodosis and 
cancer via binding to cellular surface receptors 
(RAGE) 78 ROS are involved in AGE signalling 
through RAGE 79.
Genotoxicity of AGES involves oxidative stress and 
angiotensin 2, type 1 receptors 80. AGES regulate 
expression of vascular endothelial growth factors 81  
and induce apoptosis in fibroblasts through activation 
of ROS 82. The function of retinal microglia in rat 
may be altered by AGES by up regulating TNF-alpha 
expression and formation of ROS, which can further 
activate other signalling pathways 83. RAGE is 
involved in the pathogenesis of ischemia reperfusion 
injury 84 and inflammatory reactions during tumor 
development 85. AGES also increase endothelio 
permeability 86. Recently developed compound 
called alagebrium  may be useful in reducing MG 
and ultimately AGES induced oxidative stress, thus 
slowing the ageing process 87. Alagebrium in addition 
to other beneficial effects, also increased SOD and 
glutathione peroxidase activities in ageing hearts and 
cultured cardio myocytes 88.
Caloric restriction is known to reduce oxidative 
stress and prevent or slow the process of ageing by 
reducing the metabolism of ROS production. This will 
further prevent oxidative damage to biomolecules, 
prolonging the lifespan. Roux et al 89 has shown the 
beneficial effect of caloric restriction in fission yeast 
schizosaccharomyces peombe. A study by Hippkiss 

90,91 has shown that intermittent feeding can produce 
metabolic effects similar to those produced by caloric 
restriction such as reduced formation of MG and 
help in delaying of ageing process thus prolonging 
the life span. This is an adaptive response known as 
hormesis, which increases life span.
Sirtuin SIRT 1 expression and activation can be 
affected by many cellular conditions like caloric 
restriction, exercise and oxidative stress. Sirtuins 
are mammalian homologues of Sir2 and are class III 
histone deacetylases.
There is need for more research to determine the 
exact mechanisms related to ageing and oxidative 
stress with further aim to postpone senescence or age 
with utmost health. New antioxidant strategies are 
needed to clarify the role of antioxidant therapy in 
cardiovascular diseases.
Conclusion
Ageing is a multifactorial process involving changes 
at the level of cell, tissue, organ and the whole body 
resulting in decreased functioning, development of 
diseases and ultimately death. So oxidative stress is 
the consequence of an excess of metabolic oxidant 
species at the level of biomolecules and is related 
to ageing and age related diseases. So oxidative 
stress is caused by imbalance between oxidants 
and antioxidants. Among all the theories of ageing, 
the most updated one describes the role of ROS in 
the ageing process. Further research is needed to 
establish the exact mechanisms related to ageing and 
oxidative stress.
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