https://www.banglajol.info/index.php/BJMM/index

Bangladesh Journal of Medical Microbiology

July 2024, Volume 18, Number 2, Page 93-100 ISSN (Print) 2070-1810 ISSN (Online) 2072-3105

Original Article Open Access

Detection of Quinolone Resistance *qnr* genes and its Association with Carbapenemase genes in *qnr* Positive Enterobacteriaceae in a Tertiary Hospital in Bangladesh

Bithi Das¹, Tapan Kumar Das², Hosne Jahan³, Nazmun Sharmin⁴, Nasrin Zahan⁵, Ishrat Sharmin⁶

¹Assistant Professor, Department of Microbiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh; ²Assistant Registrar, Department of Cardiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh; ³Associate Professor, Department of Microbiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh; ⁴Curator, Department of Microbiology, National Institute of Cardiovascular Diseases. Dhaka, Bangladesh; ⁵Microbiologist, Department of Microbiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh; ⁶Associate Professor, Department of Microbiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh

Abstract

Background: Multidrug resistance in Enterobacteriaceae is dramatically increasing worldwide day by day. **Objective:** The purpose of the present study was to detect the prevalence of quinolone resistance *qnr* genes and its association with carbapenemase genes in qnr positive Enterobacteriaceae. **Methodology:** This cross-sectional study was conducted from January 2015 to December 2015 at Dhaka Medical College Hospital, Dhaka, Bangladesh. A total of 270 Enterobacteriaceae were collected from inpatient and outpatient departments of DMCH irrespective of age, sex and antibiotic intake analyzed for antibiotic susceptibility. The *qnr* determinant screening among ciprofloxacin resistant strains were conducted using PCR amplification. Searching of carbapenemase genes in *qnr* positive Enterobacteriaceae were conducted also by using PCR. **Results:** The *qnr* gene was detected in 141 (62.67%) of the 225 quinolone resistant isolates by using PCR. Highest proportion of *qnrS* were detected followed by *qnrB* and *qnrA* from quinolone resistant strains. *qnrB* genes were co-existed with *NDM-1*, *VIM*, *IMP* and *KPC* genes. *qnrS* genes were also associated with *NDM-1*, *VIM*, *IMP* and *KPC* genes. Antimicrobial-resistance rates of Enterobacteriaceae to ciprofloxacin was 83.33%. **Conclusion:** The *qnr* genes were highly prevalent in Enterobacteriaceae. They were closely associated with carbapenemase genes.

Keywords: Bangladesh; Carbapenemase genes; qnr genes

Bangladesh Journal of Medical Microbiology, July 2024;18 (2):93-100

Introduction

Quinolones are synthetic antimicrobial agents that are extensively used in medical applications throughout the world¹. The most commonly used fluoroquinolone named ciprofloxacin, which was introduced in 1987². Ciprofloxacin is mainly used against gram-negative bacteria such as Enterobacteriaceae, *Pseudomonas aeruginosa*, *Haemophilus influenzae* and *Moraxella catarrhalis*; however, it displays less activity against

Correspondence: Dr Bithi Das, Assistant Professor, Department of Microbiology, National Institute of Cardiovascular Diseases, Sher-E-Bangla Nagar, Dhaka 1207, Bangladesh; Email: bithidasm40@gmail.com; Cell No.: +8801712174071;

ORCID: https://orcid.org/0009-0008-5071-8949

©Authors 2024. CC-BY-NC

DOI: https://doi.org/10.3329/bjmm.v18i2.77083

gram-positive infections³. However, owing to the widespread use of fluoroquinolone in human, the resistance rate of these antimicrobial agents has risen in all bacterial species. In the case of UTI patients, the rate of fluoroquinolone resistance was reported in the range of 6.3% to 62.0% in gram-negative strains⁴.

Resistance to quinolone is generally due to chromosomal mutation⁵. Recently, a multi-resistance plasmid is discovered that encodes transferable resistance to quinolones; its prevalence has been increasingly described among Enterobacteriaceae in recent decades⁶. Plasmids have a crucial role in the dissemination of drug resistance genes like plasmid mediated quinolone resistant (*PMQR*) genes, extended spectrum β-lactamase (ESBL) genes, AmpC β-lactamase genes and carbapenemase genes⁷. Plasmid-mediated quinolone resistance (*PMQR*)

determinant, *qnr* genes have been mostly identified in clinical isolates of Enterobacteriaceae and have been shown to play not only an important role in quinolone resistance but also this drug resistance gene can disseminate from one bacterium to another. Thus, presence of PMOR genes among Enterobacteriaceae provides a wider reservoir for the spread of these organisms8. All types of qnr determinants have been reported in various Enterobacteriaceae and were frequently found in Escherichia coli, followed by Klebsiella species, Enterobacter species Salmonella spp. from clinical isolates around the world⁹. In addition, they have been detected less frequently in non-fermenters such as Pseudomonas aeruginosa, Stenotrophomonas maltophilia Acinetobacter baumannii¹⁰.

Simultaneous presence of qnr genes and other drug resistance genes such as extended-spectrum β-lactamase, AmpC β-lactamase and carbapenemase on the same plasmid causing multidrug failure⁷. qnrB has been co-existed with KPC and IMP genes¹¹. qnrS is associated with IMP gene¹². Few studies have been carried out in detecting qnr genes among Shigella flexneri from clinical samples and Esch. coli from water samples in Bangladesh^{13,14}. Therefore, this study was designed to explore quinolone resistant Enterobacteriaceae from different specimens followed by searching the prevalence of three groups of quinolone resistance genes (qnrA, qnrB & qnrS) by PCR. Then genes for carbapenemase were detected in qnr positive strains to observe the association of these genes with qnr genes in developing multiple drug resistance.

Methodology

Study Settings and Population: This cross-sectional study was conducted from January 2015 to December 2015 at Dhaka Medical College Hospital, Dhaka, Bangladesh. A total of 270 Enterobacteriaceae were isolated from 340 samples collecting from inpatient and outpatient departments of DMCH irrespective of age, sex and antibiotic intake. This study was approved by the Ethical Review Committee of Dhaka Medical College and informed written consent was taken from each participant.

Study Procedure: Sampling locations included urine (N=96), wound swab (N=62), sputum (N=58) and blood (N=54). All the wound swab, sputum and urine samples were inoculated in blood agar and MacConkey agar media and incubated at 37°C aerobically for 24 hours. Incubated plates were then

examined for the presence of colonies of bacteria. Primary blood culture was done in Trypticase soyabroth then subculture on blood agar and MacConkey agar media. Smear was prepared from sample and culture plate and stained by Gram's stain as per standard procedure and were examined under microscope for the presence of gram positive or gram-negative organisms. All the isolated organisms were identified by their colonial morphology, gram stain characteristic and relevant biochemical tests¹⁵. Escherichia coli grew as smooth, glossy, pink colonies on MacConkey agar media, gram negative rod, motile and characteristic sugar fermentation tests, indole positive, citrate non-utilizer. Klebsiella species were lactose fermenting mucoid pink colony in MacConkey agar media, acidic (yellow) slant and butt with gas production but no H₂S in TSI agar, urease positive, non-motile. Citrobacter species are late lactose fermenter, motile with citrate positive. Proteus species were pale colony on MacConkey agar media, characteristic swarming growth on blood agar media and 'fishy' odour, rapid urea hydrolysis in MIU media, motile, slant (red) butt (yellow) with H₂S production. Enterobacter species were pink colony in MacConkey agar media, motile, oxidase negative, citrate utilizer, indole negative, urease negative, gas producing, no hydrogen sulphide production in TSI agar media.

Antimicrobial susceptibility test¹⁶: Susceptibility to antimicrobial agents of all isolates was done by Kirby Bauer modified disk diffusion technique using Muller Hinton agar plates and zones of inhibition were interpreted according to CLSI guidelines (CLSI, 2014). Antibiotic disks such as ciprofloxacin (5 µg), cefepime (30 µg), ceftazidime (30 µg), cefotaxime (30 μg), ceftriaxone (30 μg), amoxiclav (amoxicillin 20 μg & clavulanic acid 10 µg), amikacin (30 µg), piperacillin-tazobactam (100/10 μg), imipenem (10 μg), cefoxitin (30 μg) and cotrimoxazole (1.25/23.75 μg). Screening of quinolone Enterobacteriaceae was done during disk-diffusion method using ciprofloxacin disk. The minimum inhibitory concentration (MIC) of ciprofloxacin and imipenem were determined by agar dilution method. Escherichia coli ATCC 25922 was used as control strain to assess the performance of the method. Drug resistant organisms were classified as multidrugresistant, extensively drug-resistant pandrug-resistant. Multidrug- resistant was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories (such as, aminoglycosides, tetracycline, carbapenem,

94

cephalosporine, fluoroquinolones, phosphonic acids, glycylcycline, monobactams, polymyxins). Extensively drug-resistant was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories). Pandrug-resistant was defined as non-susceptibility to all agents in all antimicrobial categories¹⁷.

Phenotypic detection of carbapenemase producers: All the isolates showing reduced susceptibility to imipenem (zone diameter< 19mm) were tested for carbapenemase production using the Modified Hodge Test. Briefly, a lawn culture of 1:10 dilution of 0.5 McFarland's standard Esch. coli ATCC 25922 broth was done on a Mueller-Hinton agar plate. A 10-µg imipenem disk was placed in the centre of the plate. Then, imipenem resistant test strain was streaked from the edge of the disk to the periphery of the plate in three different directions. After overnight incubation, the plates were observed for the presence of a clover leaf shaped zone of inhibition and the plates with such zones were interpreted as Modified Hodge test positive¹⁸. Double-disk synergy test (DDS) test and combined disk (CD) assays were also performed to screen MBLs producers. During DDS test, sterile cotton swab & test inoculums (compared with McFarland standard) were inoculated Mueller-Hinton agar plates. Imipenem disc was placed on the inoculated plate. A blank disc containing 20 µl of Tris-EDTA (1.0 M Tris-HCL, 0.1 M EDTA, pH8.0) and 20 µl of 1:320 diluted 2-mercaptopropionic acid were placed 10 mm apart from the imipenem disk. Inoculated Mueller-Hinton agar plate was incubated at 37°C for 24 hours. A clear extension of the edge of the inhibition zone of imipenem disc towards Tris-EDTA-MPA disc was interpreted as MBLs production¹⁹. During CD assay, Mueller-Hinton agar plate was inoculated with the 0.5 McFarland bacterial suspensions and two imipenem discs were placed on it. One imipenem disc was supplemented with 5 µl of 0.5 M EDTA solution as the disc contains approximately 750 µg EDTA. Inoculating plate was incubated at 37°C for 24 hours. An increased zone diameter of >6 mm around the disc containing imipenem supplemented with 750 µg EDTA compared with disc containing imipenem alone was suggested as MBLs production²⁰.

PCR for detection of qnr and other genes in qnr positive quinolone resistant strains: Genomic DNA of the ciprofloxacin resistant bacterial strains was amplified by PCR for the detection of three groups of

Qnr determinants (qnrA, qnrB and qnrS). Briefly, colonies were suspended in 50 µL of water in a microcentrifuge tube and boiled to prepare DNA templates.PCR reaction consisted of preheat at 94°C for 10 minutes followed by 36 cycles of denaturation at 94°C for 45 seconds, annealing at 530 C for 45 seconds, extension at 72°C for one minute with a final extension at 720 C for 10 minutes. Reaction mixtures without a DNA template served as negative controls. PCR was used for identification of carbapenemase encoding genes (NDM-1, KPC, IMP, VIM) among qnr positive strains (Table 1).

Table 1: Primers for genes of qnr and Carbapenemase Used In This Study

Genes	Sequence (5'-3')	Вр
QnrA-F	ATTTCTCACGCCAGGATTTG	516
QnrA-R	GATCGGCAAAGGTTAGGTCA	
QnrB-F	GATCGTGAAAGCCAGAAAGG	469
QnrB-R	ACGATGCCTGGTAGTTGTCC	
QnrS-F	ACGACATTCGTCAACTGCAA	417
QnrS-R	TAAATTGGCACCCTGTAGGC	
NDM1-F	ACCGCCTGGACCGATGACCA	264
NDM1-R	GCCAAAGTTGGGCGCGGTTG	
IMP-F	GGAATA GAGTGGCTTAAYTCTC	188
IMP-R	CCAAACYACTASGTTATCT	
VIM-F	GATGGTGTTTGGTCGCATA	390
VIM-R	CGAATGCGCAGCACCAG	
KPC-F	CGTCTAGTTCTGCTGTCTTG	498
KPC-R	CTTGTCATCCTTGTTAGGCG	

Statistical Analysis: Statistical analysis was performed by Windows based software named as Statistical Package for Social Science (SPSS), versions 22.0 (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). Continuous data were expressed as mean, standard deviation, minimum and maximum. Categorical data were summarized in terms of frequency counts and percentages.

Ethical Clearance: All procedures of the present study were carried out in accordance with the principles for human investigations (i.e., Helsinki Declaration 2013) and also with the ethical guidelines of the Institutional research ethics. Formal ethics approval was granted by the local ethics committee. Participants in the study were informed about the procedure and purpose of the study and confidentiality of information provided. All participants consented willingly to be a part of the study during the data collection periods. All data were collected anonymously and were analyzed using the coding system.

Results

Out of 270 (71.05%) Enterobacteriaceae, Esch. coli was the predominant strains (n =127, 47.04%) (Table 2).

Total 225 (83.33%) Enterobacteriaceae showed ciprofloxacin resistance. The qnr gene was detected in 141 (62.67%) of the 225 quinolone resistant isolates by using PCR. Total 187 qnr genes were isolated. More than one genes were present in many organisms. Highest proportion of qnrS (n =84,59.57%) were detected followed by qnrB (n =70, 49.64%) and qnrA (n =33, 23.40%) from quinolone resistant strains. qnrA and qnrS were highly prevalent in Esch. coli. On the other hand, qnrB was highly prevalent in Klebsiella spp. (Table 3).

More than one type of qnr genes were present in most of the organisms (Figure I).

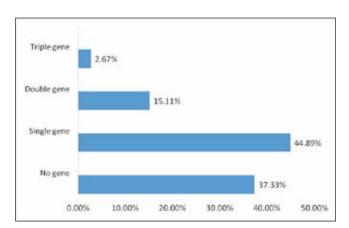


Figure I: Distribution of qnr encoding genes in quinolone resistant Enterobacteriaceae (N=225)

In the present study, 22 carbapenemase producers were identified among 141 qnr positive strains. Eighteencarbapenemase producers were positive for carbapenemase encoding genes detected by PCR. Total

Table 2: Distribution of Enterobacteriaceae isolated from different samples (N=270)

Enterobacteriaceae	Urine	Blood	Sputum	Wound swab	Total
Esch. coli	62(64.6%)	25 (46.30%)	21(36.21%)	19(30.64%)	127 (47.04%)
Klebsiella species	12(12.50%)	24 (44.44%)	31(53.45%)	20(32.26%)	87 (32.22%)
Citrobacter species	8 (8.34%)	3 (5.56%)	3(5.17%)	4(6.45%)	18 (6.67%)
Proteus species	6(6.25%)	1 (1.85%)	1(1.72%)	9 (14.52%)	17 (6.29%)
Enterobacter species	8(8.33%)	1(1.85%)	2(3.45%)	10 (16.13%)	21 (7.78%)
Total	96 (100%)	54 (100%)	58 (100%)	62 (100.0%)	270 (100%)

Table 3: Prevalence of different *qnr* genes among *qnr* positive Enterobacteriaceae (N=141)

Enterobacteriaceae	qnrA	qnrB	qnrS	<i>qnr</i> +ve strains
Esch. coli (N=71)	17+2* (26.76%)	20+2* (30.98%)	44+2* (64.79%)	50.4%
Klebsiella species $N=50$)	6+4* (20.00%)	38+4* (84.0%)	24+4* (56.0%)	35.5%
Citrobacter species (N=10)	1(10.0%)	2(20.0%)	7(70.0%)	7.0%
Proteus species (N=2)	0(00.0%)	1(50.0%)	1(50.0%)	1.4%
Enterobacter species (N=8)	3(37.5%)	3(37.5%)	2(25.0%)	5.7%
Total	33 (23.4%)	70(49.6%)	84 (59.6%)	100.0%

Note: N= Total number of qnr positive Enterobacteriaceae, n = Number of qnr genes; '*' denotes positive for all varieties of qnr genes

Table 4: Prevalence of carbapenemase encoding genes among different species of imipenem resistant *qnr* positive Enterobacteriaceae (N=22)

Imipenem resistant	Carbapenemase encoding genes			
Enterobacteriaceae	NDM-1	VIM	IMP	KPC
Esch. coli (N=13)	9 (69.23%)	2 (15.38%)	3 (23.08%)	3 (23.08%)
<i>Klebsiella species (N=7)</i>	6 (85.71%)	2 (28.57%)	0 (0.00%)	2 (28.57%)
Citrobacter species (N=1)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)
Enterobacter species (N=1)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)
Total	15 (68.18%)	4 (18.18%)	3 (13.64%)	5 (22.73%)

Note: N= Total number of imipenem resistant Qnr positive Enterobacteriaceae, n = Number of carbapenemase encoding genes

27 carbapenemaseencoding genes were isolated. Highest proportion of *NDM-1* (n= 15, 68.18%) were detected followed by *KPC* (n=5,22.73%), *VIM* (n=4,18.18%), *IMP* (n=3,13.64%). All the genes were highly prevalent in *Esch. coli* (Table 4).

Table 5: Distribution of carbapenemase encoding genes among different qnr genes of carbapenemase producers (N=20)

qnr Genes	NDM-1	VIM	IMP	KPC
qnr A (N=3)	0 (0.00%)	0(0.00%)	0(0.00%)	0(0.00%)
qnrB (N=5)	4 (80.00%)	2(40.00%)	2(40.00%)	3(60.00%)
qnrS (N=12)	11(91.67%)	2(16.67%)	1(8.33%)	2(16.67%)
Total	15(75.00%)	4(20.00%)	3(15.00%)	5(25.00%)

Note: N = Total number of qnr genes in carbapenemase producers, n = Number of carbapenemase encoding genes among Qnr genes

qnrB and qnrS had been coexisted with genes for carbapenemase such as *NDM-1*, *KPC*, *IMP* and *VIM* genes. No carbapenemase encoding genes were found with *qnrA* (Table 5).

Table 6. Comparison of results of DDS test, CD assay & MHT with PCR for detection of MBL producers among The Imipenem Resistant *qnr* Positive Enterobacteriaceae (N=22)

DDS	PC	Total	
	Positive	Negative	
Positive	11 (50.00%)	2 (9.09%)	13 (59.09%)
Negative	7 (31.82%)	2 (9.09%)	9 (40.91%)
CD assay			
Positive	12 (54.54%)	3 (13.64%)	15 (68.18%)
Negative	6 (27.28%)	1 (4.54%)	7 (31.82%)
MHT			
Positive	4 (18.18%)	3 (13.64%)	7 (31.82%)
Negative	14 (63.64%)	1 (4.54%)	15 (68.18%)

The DDS test, CD assay and MHT detected 13(59.09%), 15(68.18%) and 7(31.82%) carbapenemase producers respectively among the 22 imipenem-resistant isolates. Out of the four negative amplified PCR products, two were positive by the DDS test and three were positive by CD assay and MHT. Considering the PCR as the gold standard, the sensitivity of the DDS test, CD assay and MHT were 61.11%, 66.67% and 22.22% respectively; specificity was 50%, 75.02% and 24.97% respectively (Table 6).

Discussion

There is an increasing trend of quinolone resistant organisms all over the word. In consistent with other report of DMCH²¹ quinolone resistant Enterobacteriaceae were 83.33% in this study. In contrast to the present findings, 27.7% quinolone resistant organisms were reported from Korea¹¹.

Factors such as widespread indiscriminate use of drugs, truncated antimicrobial therapy, inadequate access to effective drugs and sometimes drugs of questionable quality are likely to be contributing factors for high resistance rate to ciprofloxacin in the present study²²⁻²³. For this reason, high proportion (62.67%) of *qnr* positive Enterobacteriaceae were observed in this study. High MIC values (8 to \geq 128 μ g/ml) were also found for ciprofloxacin in this study which might be due to the same reason²⁴.

qnr gene was absent in 37.33% of the quinolone resistant isolates. This might be due to possibility of presence of other variety of qnr genes such as, qnrC and qnrD genes or presence of another genes such as AAC (6')-Ib gene that causing drug modification²⁵ or genes for quinolone efflux pumps (qepA and oqxAB) that enhanced efflux of drugs²⁶. qnrA and qnrS were highly prevalent in Esch. coli. and qnrB was highly prevalent in Klebsiella spp. in the present study and these results were consistent with other report¹¹.

Total 22 carbapenemase producers were identified among 141 *qnr* positive strains. Carbapenemase producing organisms isolated from imipenem resistant *qnr* positive Enterobacteriaceae were 84.2% cases²¹ followed by 81.8% in the present study. High prevalence of carbapenemase producing strains are found among Enterobacteriaceae because of the presence of carbapenemase-encoding genes on plasmid along with other resistance genes such as *qnr* resulting in multidrug-resistant, extremely drug-resistant and pandrug-resistant bacteria²⁷.

In the present study, 68.2% isolates were positive for NDM-1 among 22 imipenem resistant strains. The prevalence of NDM-1 producers is increasing in Bangladesh which is reflected by another study conducted in DMCH which was 55%21. In Indian studies, the prevalence of NDM-1 producers among carbapenem resistant Enterobacteriaceae ranged between 31.2% and 91.6%28. NDM-1 producing organisms are now alarmingly rising worldwide and pose therapeutic failure²⁹. The high prevalence of NDM-1 type carbapenemase (85.78%) among Klebsiella was identified in the present study. In a study in DMCH, it was reported that 80% Klebsiella were positive for NDM-I21. Another study in India it was reported that K. pneumoniae and Esch. coli were the most frequent bacteria for NDM-1 production₃₀. Rapid dissemination of *NDM-1* producing organisms might be facilitated by the conditions overcrowding, over-the-counter availability antibiotics, low level of hygiene, and weak hospital

antibiotic policies³¹.

In this study, the high prevalence of KPC type carbapenemase (22.73%) were identified among 22 imipenem resistant strains. In a study in DMCH, it was reported that 20% *Klebsiella spp.* were positive for KPC^{20} . This suggests the high prevalence of KPC genes among Enterobacteriaceae in Bangladesh. The presence of this gene suggests the possibility of horizontal transmission, as this carbapenemase has been associated with mobile genetic elements (transposons) which can be transferred from one bacterium to another³².

In consistent with other report from DMCH²¹, 4 (18.18%) isolates were positive for *VIM* and 3 (13.64%) isolates were positive for *IMP* among 22 imipenem resistant strains in this study. In contrast to the present findings, 100% *VIM-1* producers were identified from Greece³³. The proportion of *MBL* producers from different studies including the present one suggests that the prevalence of *MBL* producers varies with geographical areas and time.

In this study, 4 (18.19%) carbapenemase resistant isolates had no carbapenemase encoding genes. This may be due to presence of other carbapenemase encoding genes such as OXA-23, OXA-48, OXA-181 types that was not included in the current study^{34,35}. Enterobacteriaceae have the capacity to elude the action of carbapenems through modification of outer membrane permeability such as porin up-regulation of efflux systems, production of carbapenem hydrolyzing β-lactamases (i.e. hyperproduction of AmpC β-lactamases, certain ESBLs with increased capacity to hydrolyze carbapenems) and production of carbapenemases either serine based carbapenemases or MBLs³⁶.

In this study, *qnrB* and *qnrS* had been coexisted with genes for carbapenemase such as *NDM-1*, *VIM*, *IMP* & *KPC.NDM-1* were highly prevalent among qnrS and *qnrB* genes, no carbapenemase encoding genes were found with *qnrA*. In a study in Hong Kong, it was found that *qnrB* had been also co-existed with *KPC* and *IMP*³⁷.

In this study, MIC of imipenem among imipenem resistant *qnr* positive Enterobacteriaceae ranged from 4 to \geq 128 µg/ml. The variation in the MIC values for carbapenems may be influenced by type and expression of carbapenemase enzymes, the bacterial species, the presence of other resistance mechanism (such as, Extended spectrum and AmpC β -lactamase), reduced permeability and or efflux pump³⁸ which is similar to the present study.

Conclusion

The presence of significant proportion of carbapenemase producing Enterobacteriaceae among *qnr* positive strains highlights the emerging therapeutic challenge in Bangladesh. So detection of multiple genes in an organism will be helpful in selection of appropriate antimicrobial strategics which will reduce the emergence and spread of *MDR* Enterobacteriaceae.

Acknowledgements

We are grateful to all the staffs of Microbiology Department of Dhaka Medical College for their active support.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Financial Disclosure

The author(s) received no specific funding for this work.

Authors' contributions

Das B, Jahan H conceived and designed the study, analyzed the data, interpreted the results, and wrote up the draft manuscript. Jahan H, Sharmin N, Das TK contributed to the analysis of the data, interpretation of the results and critically reviewing the manuscript. Sharmin N, Das TK, Zahan N, Sharmin I involved in the manuscript review and editing. Das B as collector of Data and Data Analyst. All authors read and approved the final manuscript.

Data Availability

Any inquiries regarding supporting data availability of this study should be directed to the corresponding author and are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate

Ethical approval for the study was obtained from the Institutional Review Board. As this was a prospective study the written informed consent was obtained from all study participants. All methods were performed in accordance with the relevant guidelines and regulations.

Copyright: © Das et al. 2024. Published by Bangladesh Journal of Medical Microbiology. This is an open access article and is licensed under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this license, please See: https://creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Das B, Das TK, Jahan H, Sharmin N, Zahan N, Sharmin I. Detection of Quinolone Resistance qnr genes and its Association with Carbapenemase Genes in qnr Positive Enterobacteriaceae in a Tertiary Hospital in Bangladesh. Bangladesh J Med Microbiol, 2024;18(2):93-100

ORCID

Bithi Das: https://orcid.org/0009-0008-5071-8949
Tapan Kumar Das: https://orcid.org/0009-0000-0851-4274
Hosne Jahan: https://orcid.org/0009-0000-9356-0768
Nazmun Sharmin: https://orcid.org/0000-0003-4258-3868
Nasrin Zahan: https://orcid.org/0009-0000-4943-8554
Ishrat Sharmin: https://orcid.org/0009-0004-1996-5758

Article Info

Received: 7 February 2024 Accepted: 2 March 2024 Published: 1 July 2024

References

- 1. Popiołek L, Gawronska-Grzywacz M. The impact of modifying the chemical structure of Nalidixic Acid on the antimicrobial activity of its derivatives: a review. Int Res J Pure ApplChem, 2015; 7: 191–202.
- 2. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry, 2014; 53 (10): 1565–74.
- 3. Bisacchi GS. Origins of the quinolone class of antibacterials: an expanded "discovery story" mini perspective. J Med Chem., 2015; 58 (12): 4874–82.
- 4. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Inter discipPerspect Infect Dis, 2012; 2012: 976273
- 5. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev, 1997; 61: 377–92.
- 6. Chen X, Zhang W, Pan W, et al. Prevalence of Qnr, aac (6)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob Agents Chemother. 2012; 56 (6): 3423–27.
- 7. Carattoli A. Resistance Plasmid Families in Enterobacteriaceae. Antimicrob Agents Chemother, 2009; 53 (6): 2227.
- 8. Barguigua A, Otmani F, Lakbakbi E, Yaagoubi F, Talmi M, Zerouali K, Timinouni M. First report of a Klebsiella pneumoniae strain coproducing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco. Acta Path Micro Imm Scand, 2013; 121: 675-77.
- 9. Jacoby G, Strahilevitz J, Hooper D. Plasmid-mediated quinolone resistance. Microbiol Spectra, 2014; 2: PLAS-0006–2013.
- 10. Wang F, Wu K,Sun J, et al. Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Int J Antimicrob Agents, 2012; 40 (5): 404–08.
- 11. Jeong HS, Bae K, Shin JH, Jung HJ, Kim SH, Lee JY, et al. Prevalence of Plasmid-mediated Quinolone Resistance and Its Association with Extended-spectrum Beta-lactamase and AmpC Beta-lactamase in Enterobacteriaceae. Korean J Lab Med, 2011; 31: 257-64.
- 12. Wu JJ, Ko WC, Wu HM. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese Hospital, J Antimicrob chemother, 2008; 61: 1234-39.
- 13. Talukdar PK, Rahman M, Nabi A, Islam Z, Hoque MM, Endtz HP, et al. Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PLoS ONE 2013;8(4):e61090.
- 14. Azmi IJ, Khajanchi BK, Akter F, Hasan TN, Shahnaij M, et al. Fluoroquinolone Resistance Mechanisms of Shigella flexneri Isolated in Bangladesh. PLoS ONE, 2014;9(7):e102533
- 15. Collee JG, Marr W. Culture of bacteria. In: Collee JG, Marmion BP, Fraser AG, Simmons A, eds. Practical Medical Microbiology, 14th ed.USA: Churchill Living Stone; 1996: pp. 113-30.
- 16. Bauer AW, Kirby WMM, Sheris JC, Truck M. Antibiotic susceptibility testing by a standardized single disc method. Am J ClinPathol, 1996; 145: 225-30.
- 17. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 2012; 18: 268-81.
- 18. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-third Informational Supplement. CLSI document M100-S23.CLSI:Wayne.Pa.

- 19. Kim SY, Hong SG, Moland ES, Thomson KS. Convenient test using a combination of chelating agents for detection of metallo-beta-lactamases in the clinical laboratory. J Clin Microbiol, 2007; 45 (9): 2798-01.
- 20. Qu T, Zhang J, Jiewang J, Tao J, Yu Y, Chen Y, et al. Evaluation of phenotypic tests for detection of metallo beta-lactamase-producing Pseudomonas aeruginosa strains in China. J Clin Microbiol, 2009; 47 (4): 1136-42.
- 21. Begum N, SM Shamsuzzaman. Emergence of multidrug resistant and extensively drug resistant community acquired uropathogens in Dhaka city, Bangladesh. Bangladesh J Med Microbiol, 2015; 9(2):7-12.
- 22. World Health Organization. Overcoming antimicrobial resistance. Geneva: WHO, 2000.
- 23. Malik M, Zhao X, Drlica K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. MolMicrobiol, 2006; 61 (3): 810–825.
- 24. Hasan SA, Jamal SA, Kamal M. Occurrence of multidrug resistant and ESBL producing E. coli causing urinary tract infections. Journal of Basic and Applied Sciences, 2011; 7(1): 39-43.
- 25. Vetting MW, Chi HP, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6_)-Ib and its bifunctional, fluoroquinolone-active AAC(6)-Ib-cr variant. Biochemistry, 2008; 47 (37), 9825–35.
- 26. Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother, 2007; 51: 3354–60.
- 27. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumonia and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012; 31: 2593-00.
- 28. Lascols C, Hackel M, Marshall SH, Hujer AM, Bouchillon S, Badal R, et al. Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: Data from the SMART study (2009). J Antimicrob Chemother, 2011; 66: 1992-97.
- 29. European Centre for Disease Prevention and Control. Risk assessment on the spread of carbapenemase-producing Enterobacteriaceae (CPE) through patient transfer between healthcare facilities, with special emphasis on cross-border transfer. Stockholm: ECDC; 2011.
- 30. Bushnell G, Mitrani-Gold F, Mundy LM. Emergence of New Delhi metallo- β -lactamase type-1 producing Enterobacteriaceae and non-Enterobacteriaceae: global case detection and bacterial surveillance. Int J Infect Dis, 2013; 17: 325–33.
- 31. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by gram-negative bacteria. J Antimicrob Chemother, 2011; 66: 689-92. 32. Gootz TD, Marra A. Acinetobacter baumannii an emerging multidrug-resistant threat. Expert Rev Anti Infect Ther, 2008; 6: 309-25.
- 33. Tsakris A, Pournaras S, Woodford N, Palepou MF, Babini GS, Douboyas J, et al. Outbreak of Infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol, 2000; 38 (3): 1290-92.
- 34. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemase. Trends Microbiol, 2011b; 19 (2): 588-95.
- 35. Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired Carbapenemases in Gram-negative

bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect, 2010; 16: 112-22.

36. Frere JM. Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol, 1995; 16 (3): 385-95.

37. Endimiani A, Carias LL, Hujer AM, Bethel CR, Hujer KM, Perez F, et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United

States. Antimicrob Agents Chemother, 2008; 52: 2680–2. 38. Stuart CJ, Leverstein-Van Hall MA. The Dutch Working Party on the detection of highly resistant microorganisms. Guidelines for the phenotypic screening and the confirmation of Carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents, 2010; 36 (3):

205-10.