Role of egg in food born salmonellosis: A public health issue

Jannatul Fardows1, S. M. Shamsuzzaman2

1Department of Microbiology, Kumudini Women’s Medical College, Mirzapur, Tangail. 2Department of Microbiology, Dhaka Medical College, Dhaka, Bangladesh.

Submitted on: 10 October, 2014. Accepted on: 16 December, 2014

Introduction

Food borne diseases are a serious concern as public health issue in the food industry. Salmonella organisms are most frequently isolated bacterial agents of food borne disease outbreaks especially from poultry and are of significant public health concern1. Due to its significant morbidity and mortality rates salmonellosis causes risks to human health and economic loss2. Eggs are among the most nutritious foods on earth and can be part of a healthy diet. Chicken is the most important bird to produce eggs for human consumption around the world, and eggs are unique well-balanced source of nutrients in the human diet3. Unbroken, clean, fresh eggs may contain bacteria that can cause food-borne illness. While the number of eggs affected is quite small, there have been cases of food- borne illness in the last years. To be safe, eggs must be properly handled, refrigerated, and cooked4.

Salmonella is able to remain viable in frozen products as well as foods stored at high temperatures for long periods, due to their marked ability to persist in a wide range of varying environmental conditions15.

Transmission of Salmonella through egg

There are two possible routes of bacterial contamination of egg shell and egg contents: either vertically or horizontally.

Transovarian or vertical transmission

In vertical transmission, Salmonella are introduced from infected reproductive tissue to eggs prior to shell formation 16. Salmonella serotypes associated with poultry reproductive tissues that are of public health concern include Salmonella Enteritidis, Salmonella Typhimurium and Salmonella Heidelberg. Among the different serotypes, Salmonella Enteritidis may be better able to achieve invasion, and as a consequence, may be found more frequently in reproductive tissues 17,18.

Correspondence:

Jannatul Fardows
Assistant Professor,
Department of Microbiology
Kumudini Women’s Medical College
Mirzapur, Tangail, Bangladesh. Phone: 01718387401
E-mail: jannat2026@gmail.com.
Horizontal transmission
Horizontal transmission is usually from fecal contamination on the egg shell. It also includes contamination through environmental vectors, such as farm handlers, pets and rodents.

Transmission to human
Human salmonellosis is generally foodborne and is contracted through consumption of contaminated food of animal origin such as meat, milk, poultry and eggs. Recently, egg and egg products are the important source of salmonellosis. Unhygienic practice of farm handlers even home-made egg foods can cause salmonellosis due to ingestion of undercooked egg.

Pathogenesis
In human the bacteria travel to the stomach and pass to the intestine, where they invade the cells, causing diarrhoea to their infected host body. Salmonella pathogenicity Island (SPI1) function is required for the initial stages of salmonellosis, i.e. the entry of Salmonella into nonphagocytic cells by triggering invasion and the penetration of the gastrointestinal epithelium. Furthermore, SPI1 function is required for the onset of diarrheal symptoms during localized gastrointestinal infections. The function of SPI2 is required for later stages of the infection, i.e. systemic spread and the colonization of host organs. The role of SPI2 for survival and replication in host phagocytes appears to be essential for this phase of pathogenesis.

In gastro-enteritis, infiltration of polymorphonuclear leukocyte (PMN) confines Salmonella infection to gastrointestinal (GI) tract. This response appears to depend on the induction of IL-8, a strong neutrophil chemotactic factor which is secreted by the intestinal cells as a result of Salmonella colonization and translocation of bacterial protein into host cell cytoplasm. The degranulation and release of toxic substances by neutrophil may result in damage to the intestinal mucosa causing the inflammatory diarrhoea in nontyphoidal salmonellosis and the strong inflammatory response prevents the spread beyond the GI tract.

In enteric fever (typhoid and paratyphoid) there is infiltration of mononuclear cells into small intestinal mucosa. The Salmonella disseminate before they multiply to high enough levels to stimulate a strong inflammatory response so the initial symptoms are only low grade fever and constipation. First Salmonella is transported from gut to mesenteric lymphnode and multiply there, then through thoracic duct it enters in circulation and causes primary bacteremia. Then it infects different reticulo-endothelial organs such as liver, bone marrow, different lymphnode including payer's patches, multiplying in those organs and re-enters in circulation and causes secondary bacteremia. Fever and other signs and symptoms develop during this phase. Finally, the bacteria may persist in gallbladder and rarely in kidney and causes chronic carrier state from where it may shed usually in stool and occasionally in urine.

Clinical manifestation of salmonellosis
In human disease, the clinical pattern of salmonellosis can be divided into four disease patterns namely enteric fever, gastroenteritis, bacteremia and other complications of nontyphoidal salmonellosis as well as chronic carrier state.

Enteric fever
Salmonella Typhi causes typhoid fever whereas Paratyphi A, B and C cause paratyphoid fever with symptoms which are milder and a mortality rate that is lower than Salmonella Typhi. Both serotypes are solely human pathogens. Infection occurs due to ingestion of raw egg or undercooked egg product contaminated with human waste. Symptoms are headache, chills, cough, sweating, myalgia, malaise and arthralgia. Gastrointestinal symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea more commonly than constipation. Physical findings include coated tongue, rose spot, rash, splenomegaly, bradycardia and abdominal tenderness. Up to 10% of untreated patients with typhoid fever excrete Salmonella Typhi in the feces for up to 3 months and 1-5% develop chronic asymptomatic carrier, shedding Salmonella Typhi in either urine or stool for >1 year.

Gastroenteritis
Nontyphoidal salmonellosis or enterocolitis is caused by at least 150 Salmonella serotypes with Salmonella Typhimurium and Salmonella Enteritidis being the most common serotypes in the United States. Infection always occurs via ingestion of egg contaminated with poultry feed or poultry droppings rather than human waste. Symptoms of non-typhoidal infection (Salmonella Enteritidis and Salmonella Typhimurium) commonly observed are diarrhea, headache, abdominal pain, nausea, fever and vomiting.

Epidemiology
WHO’s Food borne Disease Burden Epidemiology Reference Group (FERG) shows that from 2010, there were an estimated 582 million cases of 22 different food borne enteric diseases, among them Salmonella were the main enteric disease agent responsible for most deaths. It is estimated that in the U.S. Salmonella transmission through contaminated egg shell or egg products results in 48 million cases of salmonellosis and costs $365 million annually. A more accurate figure of salmonellosis is difficult to determine because normally only large outbreaks are investigated whereas sporadic cases are
under-reported25. Typhoid fever is endemic throughout Africa and Asia as well as persists in the Middle East, some eastern and southern European countries and central and South America22.

Detection techniques for Salmonella in eggs

Conventional culture methods used for the isolation of Salmonella from eggs include, nonselective pre-enrichment followed by selective enrichment and plating on selective and differential agars. Suspect colonies are then confirmed biochemically and serologically. These methods are time consuming and take approximately 4-7 days26. Since Salmonella are closely related to both public and animal health, more rapid and sensitive methods for the identification for the identification of this bacterium are required26.

Rapid detection methods

The detection of antibodies to Salmonella by EIA offers a sensitive and cost-effective method. The PCR tests have been successfully applied to detect a number of food borne pathogens, including Salmonella, from a range of foodstuffs27.

Detection of carrier state

The current gold standard method to detect for carriers is stool culture. This is not only tedious and costly; it also has a low sensitivity. Multiple bacteriological examinations of stools are also necessary to make a reliable diagnosis due to intermittent or light fecal excreters among carriers. Different serological test like detection of IgG and IgA against Vi-antigen in blood are developed for diagnosis of carrier state by ELISA or RIA. Various studies were revealed that IgG is the primary indicator for carriers. But IgA can be found in both the acute and carrier state28,29,30.

Antibiotic susceptibility pattern of Salmonella/ different treatment pattern of salmonellosis

Most of the Salmonella serotypes are sensitive to ciprofloxacin, ceftiraxone, chloramphenicol, ampicillin, cotrimoxazole and azithromycin20. Recently Multi drug resistance Salmonella Typhi (MDRST) are resistant to ampicillin, cotrimoxazole and chloramphenicol31. With the emergence of MDRST, quinolone such as ciprofloxacin has gained the importance for the treatment of enteric fever for the last several years32. But now it becomes almost ineffective. At present ceftiraxone is the most effective drug for enteric fever33. Azithromycin has also been effective in some case. Ciprofloxacin 750mg twice daily for 14 days is the treatment of choice in Salmonella carrier state. Cholecystectomy may be indicated in treatment failure cases having gall stones or nonfunctioning gallbladder. Salmonella gastroenteritis is self limiting disease and usually needs no antibiotics31,34.

Bangladesh scenario

Bangladesh is one of the developing country in the world, but rich in poultry industry as other neighbor country like India and Pakistan. Several studies were done regarding prevalence of Salmonella from egg collected from poultry and market. Salmonella was prevalent in a wide range (8%-12%) from egg in Dhaka city26,35. Another study revealed the contamination rate of different serotype of Salmonella in 4.47% of market eggs and 6.66% of poultry eggs. Of them, most of the identified Salmonella serotype was S. Enteritidis 36. Prevalence rate of Salmonella is 83% in poultry eggs in different market of Savar area37. Contamination mainly by moist environment of market and poultry house, poultry feeds, unhygienic practice of farm handlers and surrounding environment 4. Another study was done to detect the Salmonella contamination rate from poultry feeds, where 71.43% Salmonella was detected from poultry feeds from different market in Savar area38.

Public health significance of salmonellosis

Salmonellosis is an important global public health problem causing substantial morbidity and thus also has a significant economic impact. Although most infections cause mild to moderate self-limited disease, serious infections leading to deaths do occur39. In spite of the improvement in hygiene, food processing, education of food handlers and information to the consumers, foodborne diseases still dominate as the most important public health problem in most countries 40. This has significant implication in the developing countries like Bangladesh where poultry industry is the fastest growing segments41. Salmonella is mostly transmitted to humans, through contaminated food and water. In hospitals, person to person transmission may also happen. Cross contamination can occur in farm houses as well as during handling of poultry products42. Salmonella can also leads to severe condition like sepsis and death especially in infants and immunocompromised adults43. Other than gastroenteritis, Salmonella may also cause extra intestinal infection like meningitis, osteomyelitis, arthritis, pneumonia, cholecystitis, peritonitis, pyelonephritis, endocarditis, pericarditis, vasculitis and chronic condition like aseptic arthritis and Reiter's syndrome44. The predominant serovars of Salmonella, having public health importance are mainly S. Enteritidis and S. Typhimurium 1. Recent concern in public health point of view is antibiotic resistant serotypes45. The WHO observed an alarming rate increment of resistant Salmonella strains due to the abusive use of antibiotics in poultry farm46. The horizontal transmission of virulence genes in multidrug resistant Salmonella strains can increase virulence and invasiveness and it cause high mortality rates47.
Eggs associated salmonellosis is an important public health problem in the world. We have to consider some of the points that eggs offered for sale must be free of feces, dirt and stains. Premises and equipment for handling and storage of eggs must be maintained in a sanitized state fit for the production of food for human consumption. Egg farms and retail markets must be regularly visited by field inspectors to monitor poultry feed, egg quality. Continuous monitoring and control methodologies, which should be applied in poultry farms for the control of spread and eradication of this pathogen, where possible, are strongly recommended. Efforts including critical control point programs in food production are needed to reduce the incidence of Salmonella in food. Consumers-awareness efforts would protect public health from food borne Salmonellosis.

Conflict of interests
There is no conflict of interests among authors regarding the publication of this paper.

Acknowledgement
Thanks to Dr. Nasreen Farhana, Dr. Akteruzzaman Chowdhury, Lecturer of Microbiology and Dr. Najneen Nehar, Lecturer of Virology, Dr. Abu Bakar Siddique, Assistant Resister, Dhaka Medical College, for their nice co-operation and support.

References
Role of egg in food born salmonellosis