Low Prevalence of Antibody to Hepatitis G Virus Among the Risk Groups and Healthy Population of Bangladesh

M Siddiqua, 1 AA Nawsher, 2 S Tabassum, 3 MN Islam 4

1Dr Mahmuda Siddiqua, Associate Professor, Dept. of Microbiology, Ibn Sina Medical college, Kallyanpur, Dhaka; 2Dr Ahmed Nawsher Alam, Bacteriologist, Microbiology Laboratory, Institute of Public Health, Dhaka; 3Professor Dr Shahina Tabassum, Chairman, Dept. of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka; 4Professor Dr Md Nazrul Islam, Ex Chairman, Dept. of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka

Abstract
Hepatitis G virus (HGV) is a RNA virus, which was identified in 1995-1996 as a transfusion transmissible virus and is associated with acute or chronic hepatitis. The sero-prevalence of hepatitis G virus was evaluated among various risk groups and healthy controls from Bangladesh.

A total of 252 subjects comprising of Intravenous drug users (n=40), commercial sex workers (n=30), multiply transfused patients (n=62), hemodialysis patients (n=30), anti HCV positive patients (n=30), anti HIV positive patients (n=30) and healthy population (n=30) were included in this study. Antibody to hepatitis G virus E-2 protein was detected in the serum by Enzyme linked immunosorbent assay (ELISA). The overall antibody prevalence of HGV was 3.2%. The highest prevalence (10%) was observed among commercial sex workers, followed by intravenous drug users (5%). The lowest prevalence (3.3%) was observed among each of the groups of hemodialysis patients, anti-HCV positive patients and anti-HIV positive patients. Anti-HGV antibody was not detected among any subjects from the control group. Epidemiologic data indicate that HGV is prevalent in risk groups though at very low prevalence.

Key words: Hepatitis G virus (HGV), anti-HGV.
controls was 1 to 5 %, in thalassaemic children 32.6%, asymptomatic carriers of anti-HCV 20.4%, IDUs 18.2%, aplastic anaemia patient 14.3%, CSWs 10% and in chronic liver disease 10% 10. Diagnosis of HGV infection is usually carried out by testing serum for the viral genome and /or antiviral antibody. The presence of HGV genome in serum is evaluated by reverse transcriptase PCR (RT-PCR). Satisfactory results have been obtained using Enzyme Immuno Assay (EIA) based on recombinant E2 protein expressed on Chinese Hamster Ovarian (CHO) cell.8, 11

HGV is transmitted by parenteral12, sexual13, and vertical14 routes. Depending on the route of transmission of HGV, various risk groups including intravenous drug users (IDUs), commercial sex workers (CSW), multiply transfused patients (MTP), hemodialysis patients, anti-HCV positive patients, and anti-HIV positive patients were considered as study group in the present study. As no data about the prevalence of infection with HGV among various risk groups and the general population is available from Bangladesh, this is the first study to detect the prevalence of HGV infection.

Patients and Methods:
The study was carried on 252 subjects comprising of various population at risk. Regarding demographic characteristics of various risk groups, the intravenous drug users (IDUs) (n=40) were male, age ranged from 11 to >40 years; commercial sex workers (CSW) (n=30) were female, age ranged from 11 to > 40 years; multiply transfused patients (MTP) (n=62) including thalassemic, haemophalic and aplastic anaemia, having history of blood transfusion for > 30 units of blood or blood products, 36 were male and 26 were female, age ranged from 0 to >40 years; hemodialysis patients (n=30) were 21 male and 9 female, age ranged from 21 to >40 years; anti-HCV positive patients (n=30) were 21 to >40 years of age including 26 male and 4 female; anti-HIV positive patients (n=30) including 21 male and 9 female from 11 to >40 years of age and healthy population (n=30) were selected from those who had no history of apparent jaundice in life, age ranged from 21 to 40 years, of which 12 were male and 18 were female. Histories of the patients were recorded in a pre-designed data collection sheet. 3-5 ml of venous blood was collected in a sterile test tube aseptically by veni-puncture with informed written consent of the subjects and from the guardians of the subjects who were minor. Antibody to HGV E2 protein was detected in the serum by Enzyme linked immunosorbent assay (ELISA) using a commercially available kit (Diagnostic Automation, Inc. USA; Lot No. G 20070201 and G 20060801, Ref no. 1887-12) according to the manufacturer’s instruction.

Result:
252 subjects from various risk groups were tested for antibody to HGV in this study, of which 8 subjects were found positive showing the overall prevalence of HGV was 3.2% (Table-1). Among different risk groups, highest prevalence 10% (3/30) of HGV antibody was observed among commercial sex workers (CSW) followed by 5% (2/40) among intra venous drug users (IDU). 3.3% (1/30) subjects had HGV antibody from each of the groups of hemodialysis patients, anti-HCV positive patients and anti-HIV positive patients. No antibody to HGV was detected among multiply transfused patients (0/62) and the healthy populations (0/30). Considering the age, the highest 4.9% (2/41) prevalence of HGV antibody was observed among >40 years of age group followed by 4.3% (3/69) among 31-40 years of age group. Comparatively low prevalence of 3.1% and 2.8% was observed in 11-20 years and 21-30 years of age group respectively. The prevalence was found 0% (0/27) among <10 years of age. The prevalence of HGV antibody in different sex was found 3.2% (5/156) in males and 3.1% (3/96) in females.

Table 1: Prevalence of antibody to HGV in different groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Up to 10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-40</th>
<th>>40</th>
<th>Total</th>
<th>Subject</th>
<th>Total</th>
<th>Prevalence of HGV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVDU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05% ***</td>
</tr>
<tr>
<td>CSW</td>
<td>0 (0)</td>
</tr>
<tr>
<td>MTP</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anti-HCV patients</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anti-HIV patients</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Healthy population</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

* Number of HGV positive patients
(** Number of subjects tested

% *** Prevalence of HGV antibody

Discussion:
Diagnosis of HGV depends on two methods; acute infection can be diagnosed by detection of HGV RNA by PCR, while past infection can be diagnosed by detection of antibody to E2 protein of the virus by ELISA. However, anti E2 antibodies to HGV and HGV RNA are almost mutually exclusive.15 It has been reported that 60%-70% patients develop antibodies after infection.16 As such, the detection of HGV RNA and anti-E2 is necessary to accurately define the
prevalence of HGV infection in a population. Our study detected HGV antibody by ELISA method only as there was no provision to detect acute infection by PCR.

In this study, the overall prevalence of HGV antibody was 3.2% (Table-I). Our study detected the highest prevalence (10%) of HGV antibody among CSWs. Similarly, a study from Thailand found, HGV RNA in 10% of CSWs. In contrast, a study from Taiwan reported the prevalence of HGV antibody is 23% and HGV RNA is 13%. Thus, it may be assumed that the predominant route of transmission of HGV in Bangladesh may be the sexual route.

Among the IDUs, only 2 (5%) subjects were positive for HGV antibody. In a study from Taiwan, out of 76 IDUs studied, antibody to HGV was detected in 10 (13%) subjects. Relatively low (8.8%) prevalence of HGV RNA studied, antibody to HGV was detected in 10 (13%) subjects. Very high prevalence 56.8% and 46% of HGV antibody among HIV positive people was reported from Germany and the USA. Among HCV positive patients from Turkey, which is similar to the present study. Similarly, among HIV positive patients from Germany and the USA.

None of the 62 multiply transfused patients had antibody to HGV. However, 11.4% prevalence of HGV RNA has been reported from Brazil among multi-transfused patients. Since only past infection by HGV was detected in our study but acute infection was not carried out, further evaluation to explore into such low prevalence among multi-transfused patients in our local population is required.

Among the 30 hemodialysis patients in this study, only 1 (3.3%) was positive for HGV antibody. Prevalence of antibody to HGV in hemodialysis patients in Japan was reported as 7.8% – 10.7% and 25.7% from South Africa. Low prevalence of hepatitis G virus antibody in hemodialysis patients may be due to following reasons i) immunocompetent individuals develop antibody at a much higher ratio than immunodepressed patients, ii) HGV infection may be more likely to persist in hemodialysis patients and seroconversion to anti E2 may be less likely to occur and iii) it was also been suggested that seropositivity for anti E2 may be short lasting after seroconversion among hemodialysis patients. However further studies must be carried out to substantiate this hypothesis.

Of the HCV positive patients in this study, 1 (3.3%) was found to be positive for HGV antibody. A 4% prevalence of HGV antibody and 6% HGV RNA prevalence was reported among HCV positive patients from Turkey, which is similar to the present study. Similarly, among HIV positive patients only 1 (3.3%) were positive for HGV antibody. Very high prevalence 56.8% and 46% of HGV antibody among HIV positive people was reported from Germany and the USA.

Low prevalence of HGV antibody among risk groups indicate overall low prevalence in our country.

Our study did not observe any HGV antibody among the healthy populations. Similarly studies from Belgium and India did not observe HGV antibody or HGV RNA among healthy controls. These findings indicate that prevalence of HGV infection is absent or low among the general population. However, overall low prevalence of HGV antibody in the general population may perhaps reflect the low prevalence in the risk groups.

We found that HGV infection was more frequent among individuals who were older, than younger group. In our study highest 4.9% prevalence was seen above 40 years of age group. Similar findings were seen from studies in Iran and China. There was no significant difference seen in this study about the prevalence of HGV among the male (3.2%) and female (3.1%).

The present study suggests that HGV is prevalent among Bangladeshi population. However further studies with larger sample size should be carried out from time to time to obtain a dependable conclusion.

Reference

