
 REVIEW ARTICLE

IMMUNOLOGICAL ASPECTS OF COVID-19: WHAT WE
KNOW SO FAR
KAZI ZULFIQUER MAMUN, NABEELA MAHBOOB, KAZI TAIB MAMUN, HASINA IQBAL, AFRIN S

Abstract

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease

that it causes coronavirus disease 2019 (COVID19) have changed the world. Many virulence factors

and immune mechanisms contribute to the deteriorating effects during SARS-CoV-2 infection. Both

humoral and cellular immune responses are involved in the pathophysiology of the disease. The

clinical picture of COVID-19, immune memory and reinfection remains unclear and unpredictable. An

electronic search of PubMed, Cochrane Library and Google scholar was performed, and citation

relevance was determined according to the aim of the review.Other relevant literature was manually

searched as compliment. More than 60 relevant scientific articles and reports were considered. We

have reviewed the literature describing immunological aspects of COVID-19.Through this review, we

tried to explain theimmune pathogenesis of SARS CoV 2infection providing high-quality evidence to

understand SARS-CoV-2 pathophysiology, its interaction with target cells and the immune response

to the virus, including the contribution of dysfunctional immune responses to disease progression in

patients with COVID-19, based on the recent research progress of SARS CoV 2 and the knowledge

from researches on SARS CoV and MERS CoV. Different therapeutic options have been implemented

to find effective, even though not specific, treatment to the disease, many hopes are put in developing

an effective vaccine against the virus. Understanding the immunopathogenesis of COVID-19 may

provide important clues for effective vaccine and treatments of this disease.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic,

caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has affected millions of

people worldwide.1 The first cases of COVID-19 likely

occurred from a zoonotic transmission in China in

December 2019. The causative virus is capable of

human-to-human transmission and spread rapidly to

other parts of China and then other countries.2 By 24

March 2020, SARS-CoV-2 had infected more than

381,000 people and killed more than 16,000across

195 countries/regions. A pandemic was declared by

the World Health Organization.3Daily reports of sharp

rises in the number of new cases continued to emerge
from manycountries/regions, but efforts to overcome
the virus are hampered by a lack of knowledge of
several important aspects of SARS-CoV-2
infection.Alongside investigations into the virology of
SARS-CoV-2, understanding the fundamental
physiological and immunological processes underlying
the clinical manifestations of COVID-19 is vital for the
identification and rational design of effective
therapies.2In this Review, we summarize the current
state of knowledge of the interaction of SARS-CoV-2
with the immune system elicited by SARS-CoV-2 and

the immunological pathways that likely contribute to

disease progression.
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PubMed, Cochrane Library and Google Scholar were

searched on December 7, 2020, to extract published

articles that reported the immunopathology of COVID-

19 patients. Relevance was judged according to articles

describing theories of immune mechanisms influencing

the Covid 19 pandemic. We carried out in depth

literature review, scrutinizing every article out of total

results following a search by key words. About 63

relevant scientific articles and reports were considered

from these various databases.

Pathogenesis of COVID-19

The precise mechanism of COVID-19 pathogenesis

remain elusive. However, recent studies in COVID-19

patients and previous studies on Severe acute

respiratory syndrome–related coronavirus (SARS-CoV)

and Middle East respiratory syndrome coronavirus

(MERS-CoV) infections have provided some perceptions

into pathogenesis of COVID-19.It has been

documented thatthe pathophysiology of SARS-CoV-2

infection closely resembles that of SARS-CoV infection,

with aggressive inflammatory responses strongly

implicated in the resulting damage to the airways.4

Therefore, the severity of the disease is not only due to

the viral infection but also due tthe host

response.5,6SARS-CoV-2 is acquired by exposure to

microdroplets present in the exhalates of infected

individuals or by contact with viral particles present

in contaminated fomites. Once the virus reaches the

bronchioles and alveolar spaces, the main targets are

the cells of the bronchial epithelium and the type-II

Angiotensin 2 Converting Enzyme (ACE2+)

pneumocytes of the alveolar epithelium.7

SARS- CoV-2 entry and replication

The main receptor for SARS-CoV and SARS-CoV-2 on

the membrane of the target cells is the Angiotensin 2

Converting Enzyme (ACE2), a metallopeptidase present

on the membrane of many cells, including type-I and

-II pneumocytes, small intestine enterocytes, kidney
proximal tubules cells, the endothelial cells of arteries
and veins, and the arterial smooth muscle, among
other tissues.8,9 The spike (S) protein is expressed on
the surface of the corona virus particles, giving the
characteristic ‘crown’ appearance. The S1 subunit of

S protein consists of an amino-terminal domain and a

receptor-binding domain (RBD).10RBD binding to ACE2

triggers endocytosis of the SARS-CoV-2 virion and

exposes it to endosomal proteases.11The S2 subunit

consists of a fusion peptide (FP) region and two heptads

repeat regions: HR1 and HR2.12Within the endosome,

the S1 subunit is cleaved away, exposing the fusion

peptide, which inserts into the host membrane. The

S2 region then folds in on itself to bring the HR1 and

HR2 regions together. This leads to membrane fusion

and releases the viral package into the host

cytoplasm.Chen et al. and Wrappet al. reported that

SARS-CoV-2 RBD binds to ACE2 with higher affinity

than that of SARS-CoV.13,14In addition, Coutardet al.

revealed that the SARS-CoV-2 S protein contains a

furin-like cleavage site, similar to MERS-CoV and

human coronavirus OC43, which is not found in SARS-

CoV.15These characteristics could contribute to the

increased infectivity of SARS-CoV-2 relative to SARS-

CoV. In another study by Hoffmann et al. reported the

role of the cellular serine protease TMPRSS2 to properly

process the SARS-CoV-2 spike protein in addition to

furinprecleavage, and facilitate host cell

entry.16Thereafter, viral RNA serves as a template for

the translation of the polyproteins pp1a and pp1b that

are cleaved into 5-16 non-structural proteins (nsp2-

nsp9), which in turn induce rearrangement of the

membranes to form the vesicles where viral replication

and transcription complexes are anchored. The virions

are assembled in the ER-Golgi and mature virions are

subsequently released by the secretory pathway.17

Immune response against SARS- CoV-2

Immune responses against viruses are rather

heterogeneous. An efficient intervention of innate

immunity, with its cellular and soluble components,

is fundamental to combat the early phases of a primary

infection by cytopathic viruses. An efficient innate

immune response may control the virus and/or allow

sufficient time to mount an efficient T-cell response.18

i. The innate immune response

After the corona viruses enter the host cells, they are

recognized by Pattern Recognition Receptors

(PRR)expressed by epithelial cells and also the local

cells of the innate immune response, such as alveolar

macrophages.17Upon ligand binding, there is

production of Type-I and -III antiviral Interferons and

different chemokines.19These chemokines attract more

innate response cells (polymorphonuclear leukocytes,

monocytes, NK cells, dendritic cells), which also

produce chemokines, such as MIG, IP-10, and MCP-

1. These recruits lymphocytes, which recognizes the

viral antigens presented by DCs.20,21There is scant

information regarding the innate responses to SARS-

CoV-2 in asymptomatic patients or in patients with

mild symptoms. The reported lymphopenia may be due

to a deficiency in NK cells in patients with severe

disease. Further phenotypic and functional studies on

NK cell subsets should be performed in these patients

in comparison with paucisymptomatic or

asymptomatic ones.18

Several publications highlighted the initial phases of

the SARS-CoV-2 infection, compared to other
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coronavirus, and their effects on subsequent immune

and inflammatory responses. Chu et al.compared the

in vitro infection of human lung explants with SARS-

CoV and SARS-CoV-2 and demonstrated that both

viruses can equally infect type-I and -II pneumocytes,

plus alveolar macrophages, although SARS-CoV2 had

a better capacity to replicate in pulmonary

tissues.22While SARS-CoV induced the expression of

IFN-I, IFN-II, and IFN-III, but SARS-CoV-2 failed to

induce any such immune mediators and was also less

efficient in inducting other cytokines. SARS-

CoVinduced the production of 11 cytokines studied,

while SARS-CoV-2 induced only five (IL-6, MCP1,

CXCL1, CXCL5, and CXCL10/IP10). Blanco-Melo et

al.studied the transcriptional response to SARS-CoV-

2, compared to SAR-CoV, MERS-CoV, respiratory

syncytial virus (RSV), parainfluenza virus 3 (HPIV3),

and influenza A virus (IAV), forin vitro infection of

respiratory cell lines, experimental in vivo infection of

ferrets, and post-mortem lung samples of COVID-19

patients. Their results showed that SARS-CoV-2

reduced IFN-I and IFN-III responses and significant

induction of multiple proinflammatory chemokines like

IL-1B, IL-6, TNF, and IL1RA. These findings were

further supported by the increased serum levels of

these molecules in COVID-19 patients.23These studies

strongly suggest that SARS-CoV-2 differs from other

coronaviruses in its capacity to replicate within the

pulmonary tissue, and elude from the antiviral effects

of IFN-I and IFN-III, activate innate responses, and

induce the production of the cytokines required for

the recruitment of adaptive immunity cells. Therefore,

the release of large number of virions leads to both

infection of neighboring target cells and viremia, the

latter resulting in systemic infection since ACE2+ cells

are widely distributed in many tissues.8,9

ii. The adaptive immune response

The transition between innate and adaptive immune

responses is critical for the clinical progress of SARS-

CoV-2 infection. It is at this crucial moment when

immune regulatory events, still poorly understood,

probably leads to the development of either a protective

immune response or an exacerbated inflammatory

response.2,24,25

Understanding the antigen presentation of SARS-CoV-

2 has important role in comprehension of COVID-19

pathogenesis. Unfortunately, there is still lack of report

about it, and only some information is available from

previous researches on SARS-CoV and MERS-CoV. The

antigen presentation of SARS-CoV mainly depends on

MHC I molecules26 recognized by virus-specific

cytotoxic T lymphocytes (CTLs), but MHC II also

contributes to its presentation.

The protective response is T cell dependent, where CD4

helps B cells, for the production of specific neutralizing

antibodies, and cytotoxic CD8 cells capable of

eliminating infected cells. It is worth noting that 80%

of the infiltrating cells in COVID-19 are CD8.27

Although T and B cells, macrophages, and DCs do not

express ACE2, some reports suggest that DC-SIGN may

serve as a trans receptor for SARS-CoV on DCs, which

even when not infected may transfer the virus to other

susceptible cells.17,21,28Vandakari and Wilce reported

that CD26, an aminopeptidase involved in T cell

activation, may bind to the S protein of SARS-CoV-2,

resulting in a nonproductive T cell infection. 29 Wang

et al. reported that SARS-CoV-2 infects human T-cell

lines via a novel route through CD147 spike protein,

present on the surface of T lymphocytes.30CD147, a

protein of the immunoglobulins superfamily that

induces the metalloproteinases of the extracellular

matrix, binds to the S1 domain and facilitates viral

entrance into host cells. The significance of non-

productive T cell infection may be related to the

lymphopenia found in patients with SARS, MERS, and

COVID19.31The binding of SARS-CoV-2 S protein to

molecules like CD26 and CD147, which participate in

T cell activation, suggests that a non-productive T cell

infection may result in activation-induced cell death

(AICD). There is evidence that T cells are functionally

exhausted in patients with severe COVID-19.32These

data suggested that a breakdown of antiviral immunity

may play a role in the pathogenesis and severity in

COVID-19. In CD8+ T cells, the frequency of the

nonexhausted (PD-1" CTLA-4" TIGIT”) subset in the

severe group was significantly lower. It was suggested

that the virus promotes an initial excessive activation

in the beginning of the disease and is followed by

subsequent exhaustion of CD8+ T cells.33

A dysfunctional response, unable to inhibit viral

replication and elimination of the infected cells, may

result in an exacerbated inflammatory response leading

possibly to a cytokine storm, manifested clinically by

severe acute respiratory distress syndrome (ARDS) and

systemic consequences, such as disseminated

intravascular coagulation.7In a SARS-CoV primate

model of infection, Clay et al.showed that the virus

replicated in the lungs until Day 10 post-infection; but,

surprisingly, lung inflammation was more intense after

virus clearance, reaching its peak at Day 14 and

remaining so until Day 28. These results suggest that

an early phase dependent on virus replication does

occur, while a later viral-independent, immune

dependent phase seems to be accompanied by an

exacerbated inflammatory component.34 The viral-

independent phase has been explained by the
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inflammatory reaction secondary to ACE2 inhibition

or by an autoimmune phenomenon due to the epitope

spreading caused by prolonged tissue destruction.20,35

It remains to be demonstrated whether a similar two-

phase course also occurs in COVID-19.

There is also lack of clear information on the production

of specific and neutralizing antibodies (NAbs), crucial

for the establishment of a protective immunity.

Antibodies specific for the so-called receptor-binding

domain (RBD) on S protein are considered the main

targets of NAbs, which is a prerequisite for protection

against respiratory coronaviruses (rCoVs). Cocktails

of antibodies specific for RBD and other regions of the

S protein may further improve the effect of NAbs against

SARS-CoV-2 and, eventually, its mutant

strains.18Multiple evidences support that the humoral

response, mainly antibodies against the S protein,

blocks virus attachment to susceptible ACE2+ cells.36-

39However, there are still many questions regarding

the significance of antibodies against the different viral

proteins, and the cross reactivity of antibodies against

other highly prevalent alpha- and beta-coronavirus,

although it seems that cross reactivity occurs mostly

within the beta-coronaviridae,35,40 particularly between

SARS-CoV and SARS-CoV-2 that share 90% of the

amino acid sequence in S1.41 However, it can also

happen with other antigens, as demonstrated in the

outbreak of HCoV-OC43 in British Columbia (Canada)

where cross reactivity of anti-N antibodies with SARS-

CoV was found.42 In this respect, there is no

information regarding whether survivors of the SARS

and MERS epidemics became infected with SARS-CoV-

2, and if so, the nature of their clinical and

immunological behavior. IgM and IgA antibodies can

be detected early during the 1st week of symptom

onset, whereas IgG can be detected at around 14 days

after the initiation of symptoms;35,40 however, given

the short time elapsed since the beginning of the

COVID-19 pandemic, it is not known how long the

protecting levels of these blocking antibodies will

remain active. Nevertheless, in a cohort of SARS

survivors followed for 6 years, Tang et al. found that

anti-SARS-CoV antibodies were undetectable in 21/

23 patients and that none of them had specific memory

B cells, whereas specific memory T cells were present

in 14/23 (60.9%).43The study of the antibodies against

different SARS-CoV-2 antigens, in different populations

and at various times during the pandemic, would be

an important way of understanding the dynamics of

transmission and seroprevalence. Furthermore, it is

equally important to conduct serial antibody titers

measurements in cohorts of COVID-19 survivors in

order to determine how long the immune memory

remains active and its effect on the possible

reemergence of SARS-CoV-2, or other coronavirus

outbreaks.

In patients with SARS, some neutralizing antibodies

targeting non-RBD regions of the S protein caused an

antibody-dependent enhancement effect on viral

infectivity and disease.20A very recent study on 26

patients who recovered from COVID-19 revealed that

although most developed antibodies specific for S

protein, only in 3 cases they were specific for the RBD

domain.44Ho et al. studying the antibody response in

SARS, found that patients with more severe clinical

courses had earlier and higher antibody responses,

and hypothesized that earlier responders may have

had, during the acute phase, cross-reacting antibodies

with non-SARS coronaviruses.45Jaumeet al. and Yip

et al. demonstrated that anti-S antibodies, while

inhibiting viral entrance in permissive cells, potentiated

the infection by binding to IgG Fc receptor-II positive

(FcãRII+) cells, like B cells and macrophages.46,47 Thus,

IgG anti-S antibodies bound to FcãRII on mononuclear

phagocyte membranes enhance viral entrance through

canonical viral-receptor pathways, as recently shown

for MERS-CoV,48 thereby activating these cells and

inducing the production of proinflammatory cytokines.

The role of secretory immunoglobulin A (sIgA) in

COVID-19 has received little attention, despite the fact

that SARS-CoV-2 enters the body through the

respiratory mucosa and sIgA is fundamental to the

mucosal defenses. Furthermore, several studies into

COVID-19 had shown the presence of serum IgA

against SARS-CoV-2 49,50and, in preclinical studies

with anti-SARS vaccines, administered either sub-

lingually or intranasally, the presence of neutralizing

IgA was demonstrated in bronchoalveolar lavages.51-

53These findings support the importance of

investigating the presence of sIgA in secretions of

patients with COVID-19 and defining its possible anti-

viral neutralizing activity in respiratory tract mucosa.54

Cytokine storm in COVID-19

COVID-19 infection is accompanied by an aggressive

inflammatory response with the release of a large

amount of pro-inflammatory cytokines in an event

known as “cytokine storm.” The host immune response

to the SARS-CoV-2 virus is hyperactive resulting in

an excessive inflammatory reaction. Several studies

analyzing cytokine profiles from COVID-19 patients

suggested that the cytokine storm correlated directly
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with lung injury, multiorgan failure, and unfavorable

prognosis of severe COVID-19.55-59The “cytokine

storm” results from a sudden acute increase in

circulating levels of different pro-inflammatory

cytokines including IL-6, IL-1, TNF- á, and interferon.

This increase in cytokines results in influx of various

immune cells such as macrophages, neutrophils, and

T cells from the circulation into the site of infection

with destructive effects on human tissue resulting from

destabilization of endothelial cell to cell interactions,

damage of vascular barrier, capillary damage, diffuse

alveolar damage, multiorgan failure, and ultimately

death. Lung injury is one of the consequences of the

cytokine storm that can progress into acute lung injury

or its more severe form ARDS.60ARDS leading to low

oxygen saturation levels is a major cause of mortality

in COVID-19. Although the exact mechanism of ARDS

in COVID-19 patients is not fully understood, the

excessive production of pro-inflammatory cytokines is

considered to be one of the major contributing

factors.55,61In a study of 41 hospitalized COVID-19

patients, high levels of pro-inflammatory cytokines

were observed in severe cases, including IL-2, IL-7,

IL-10, granulocyte-colony stimulating factor, IP-10,

MCP-1, macrophage inflammatory protein 1 alpha, and

TNF-á.55Predictors of fatality in a retrospective,

multicenter study of 150 confirmed COVID-19 cases

in Wuhan, China, included elevated ferritin and IL-6

suggesting that mortality might be due to virally driven

hyperinflammation.56Another study analyzing data

from 21 patients in China reported increased levels of

IL-10, IL-6, and TNF-á in severe cases compared to

moderate cases.57A similar study by Gao et al. assessed

43 patients in China and reported that levels of IL-6

were significantly higher in severe cases than in mild

cases.58Similarly, Chen et al. studied a total of 29

COVID-19 patients, divided into three groups according

to relevant diagnostic criteria, and found that IL-6 was

higher in critical cases than in severe cases and that

IL-6 was higher in severe cases than in mild cases.59

Possible mechanisms of immune evasion of SARS-

CoV-2

Data on respiratory coronaviruses, including SARS-

CoV-2, indicated that these pathogens are particularly

prone to evade immune detection and dampen human

immune responses.62 Taking into account that

susceptible HLA haplotypes, high viral load, and

previously impaired immunity may contribute to the

virus escape of immune response, based on the

knowledge of other human respiratory coronaviruses,

some other not-mutually exclusive mechanisms of

immune evasion can be hypothesized for SARS-CoV-2

(Figure-1).18

Fig.-1: Possible mechanisms of immune evasion of SARS-CoV-2.18
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Immune evasion of SARS-CoV-2 may be favored in

individuals with compromised ability to mount

efficient immune responses such as old people and

patients with immunodeficiency or individuals

carrying HLA alleles unable to properly present SARS-

CoV-2 peptides to T lymphocytes. In addition, a high

viral load may overcome the barriers of the immune

responses. The first mechanism relies on early

inhibition of IFN-1 recognition and signaling by

infected cells. In rCoVs, IFN-1 is suppressed through

different mechanisms directly or indirectly interfering

with the signaling of RNA receptors.63 Present

limitations concern whether and how much the

reduced IFN-1 production may compromise the viral

control, leading to severe consequences to infected

host. Viruses infect cells of both innate and adaptive

immunity by exerting a cytopathic effect. In turn, the

compromised function of immune cells and the

impaired antiviral effect of IFN-1 would further favor

immune evasion, resulting in highly detrimental

pathological effects.

The clinical-immunological spectrum of covid-19

In order to understand COVID-19 immunopatho-

genesis, it is important to elucidate what lies at the

root of immune response failure occurring in infected

individuals resulting at times in deviation of the

protective response into a dysfunctional program,

leading to cytokine release syndrome (CRS) with severe

inflammation and, eventually, a multi-systemic failure.

A better understanding of these events would

contribute to the design of differential therapeutic

approaches, depending on the stage of the disease,

and to the delineation of prognostic, and predictive

biomarkers. Unfortunately, there are no studies on the

immune response in infected asymptomatic

individuals, which would allow a better characterization

of the protective immune response as it occurs under

the natural conditions of the infection process.7Figure

2 shows diverse outcomes during the course of COVID-

19 and allows for an analysis of the immune response

at each clinical stage. However, it must be noted that

the immune response is conditioned by epidemiological

variables, such as intensity and duration of exposure

to the virus and possible variations in viral virulence

and, on the host side, genetic susceptibility/resistance

and health conditions at the time of exposure. The

latter includes, among other variables, age and the

existence of comorbidities that may directly affect the

immune system.64

Immunological profile in patients with COVID-19

In severe COVID-19 infection, an exacerbated

pulmonary and systemic inflammatory response

occurs, with increased serum levels of inflammatory

markers, such as C-reactive protein (CRP), lactic

dehydrogenase (LDH), ferritin, D-dimer, and IL-6, the

levels of which are considered predictors of poor

outcome.32,55

Regarding cellular changes, most studies show that

lymphopenia, although present in moderate infections,

is more pronounced in severe COVID-19and affects

mainly T cells, including CD4 Th1 and Tregs, but

particularly CD8.57,65Also, in severe COVID-19 the

number of circulating naive T cells increases and the

number of memory T cells decreases.66Although the

number of CD4 cells decreased, they expressed

activation markers such as CD69, CD38, CD44, and

HLA-DR, including Th17 CD4+CCR6+ cells.67 NK cells

also decreased in both moderate and severe cases of

the disease.68Monocytopeniawas also found in COVID-

19 patients, particularly in severe cases, but the

circulating monocytes belonged mainly to the

CD14+CD16+ inflammatory monocyte subset.65

Plasma levels of cytokines and chemokines (IL-2, IL-

2R, IL-6, IL-7, IL-8 IL-10, IP10, MIP1A, and TNFá) 57,66-

68were increased in COVID-19, but were higher in

severe infections. High levels of plasmatic IL-6 had been

consistently reported in COVID-19 and even appeared

to be associated with poor prognosis and risk of

death.64 Thus, its measurement has been proposed

as a good biomarker to monitor these patients.

 

 

Fig.-2: COVID-19 clinical and immunological spectra7
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Conclusion:

This Review has presented the various aspectsof

COVID-19 immunopathogenesis. Controlling the

inflammatory response may be as important as

targeting the virus. The association between immune

dysfunction and outcome of disease severity in patients

with COVID-19 should serve as a note of caution in

vaccine development and evaluation. Further studies

of the host immune response to SARS-CoV-2 are

necessary, including a detailed investigation of the

determinants of healthy versus dysfunctional

outcomes.
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