Thyroid Status in Patients with Low Serum Ferritin Level

S Akhter¹, ZU Nahar², S Parvin³, A Alam⁴, S Sharmin⁵, MI Arslan²

¹Dept of Biochemistry, National Institute of Neurosciences (NINS), Dhaka
²Dept of Biochemistry, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka
³Dept of Biochemistry, Sir Salimullah Medical College, Dhaka
⁴Dept of Biochemistry, Green Life Medical College, Dhaka
⁵Dept of Biochemistry, Holy Family Red Crescent Medical College, Dhaka

ABSTRACT

Iron deficiency is the most important but preventable nutritional problem in Bangladesh. Thyroid peroxidase, an iron containing enzyme, is essential for initial two steps of thyroid hormone synthesis which is a component of tissue iron. Tissue iron diminishes early in the course of iron deficiency. So thyroid hormone level may be altered in iron deficient patients. This case-control study was carried out in the Department of Biochemistry, Bangabandhu Sheikh Mujib Medical University (BSMMU) from July 2006 to June 2007. This study was done to find out the changes of thyroid hormonal activity in iron deficiency.

In this study 72 subjects were selected from the out-patient department of the hospital. Patients with low serum ferritin level <12 μg/L were selected as cases (n=36) and healthy persons with normal serum ferritin level were taken as controls. Serum ferritin, thyroid stimulating hormone (TSH), free thyroxine (FT₄) and free triiodothyronine (FT₃) were measured in all study subjects. Values were expressed as mean ± SD. Unpaired 't' test and Pearson's correlation test were performed to see the level of significance and p value <0.05 was taken as significant. Serum ferritin level in cases and controls were 6.78±4.05 μg/L and 79.04±28.08 μg/L respectively which showed significant difference (P<0.0001).

Serum TSH concentration in cases and controls were 3.32±1.54 mIU/L and 1.89±0.86 mIU/L respectively. Serum FT₄ concentration in cases and controls were 11.66±1.77 pmol/L and 13/10±1.36 pmol/L respectively and that of FT₃ were 3.00±0.68 and 3.31±0.61 pmol/L respectively. All showed significant difference between groups.

Serum ferritin and Serum TSH showed significant negative correlation in controls whereas in cases they showed negative correlation which was not statistically significant.

Both serum FT₄ and FT₃ revealed positive correlation with serum ferritin but that too was not significant statistically.

Though the study failed to show any significant positive correlation between serum ferritin and thyroid hormones, lower level of thyroid status in iron deficient patients suggest that it could be a reflection of disturbed activities of iron dependent enzymes such as thyroid peroxidase that impairs thyroid hormone synthesis. However, a large scale study is recommended to establish the fact.

This study showed that there was significant difference in thyroid hormonal status between iron deficient patients and normal healthy persons. Therefore it can be concluded that iron deficiency may impair normal thyroid hormone status.

Key words: Thyroid peroxidase, Ferritin, TSH, FT₄, FT₃
Introduction

Several minerals and trace elements like iodine, iron, selenium and zinc are essential for normal thyroid hormone metabolism. Iron deficiency impairs thyroid hormone synthesis by reducing activities of heme-dependent thyroid peroxidase. Iron deficiency anemia blunts and iron supplementation improves the efficacy of iodine supplementation1.

Thyroid peroxidase (TPO) is a membrane-bound glycosylated hemoprotein that plays a key role in the biosynthesis of thyroid hormones. This enzyme is responsible for the oxidation of iodide and binding of iodine to tyrosyl residue of thyroglobulin (organification). Two di-iodotyrosine (DIT) molecules undergo an oxidative condensation for the formation of thyroxine (T₄). Tri-iodothyronine (T₃) is yielded from the coupling of one mono-iodotyrosine (MIT) and one di-iodotyrosine (DIT). A separate coupling enzyme has not been found and since this is an oxidative process, it is assumed that same thyroperoxidase catalyzes this reaction. This hypothesis is supported by observation that the same drug which inhibits iodide oxidation also inhibits coupling2.

Iron deficiency has been reported to impair the body’s ability to make its own thyroid hormone which could increase need for thyroid medication. In a preliminary trial, iron supplementation given to iron deficient women with low blood levels of thyroid hormones, partially normalized these levels3. The degree of iron deficiency was found to affect thyroid hormone status in iron-deficient adolescent Iranian girls4.

Under normal circumstances iron absorption slightly exceeds iron excretion. The daily iron requirement for hemoglobin synthesis is 20-25 mg. Body conserves its iron stores by reutilizing the iron derived from the breakdown of the hemoglobin from aged red cells. Progressive depletion and ultimate exhaustion of available tissue iron stores is followed by the development of anemia. It has been estimated that, 20 percent of the world’s population is iron deficient and iron deficiency anemia is the most common type of anemia. Iron deficiency is defined by the coexistence of serum transferrin saturation less than 16 % and a serum ferritin level less than 15 µg/L. Anemia is defined as a hemoglobin level of 115gm/L or less in women and 135gm/L or less in men5.

Iron deficiency is the most common preventable nutritional deficiency in the world especially among infants and young children in developing countries. Its associated anemia is linked with depressed mental and motor development during infancy and early childhood which may be irreversible. In South Asia the prevalence of iron deficiency anemia (IDA) among children under 5 years of age is estimated to be 75%, 55%, and 56% in India, Bangladesh and Pakistan respectively6.

Anemia is a frequent finding in infants with congenital hypothyroidism and is dependent on the degree of neonatal hypothyroidism which imply that during development hypothyroidism may produce persisting changes even after thyroid replacement has begun7. Since iron deficiency is present before the onset of anemia, detection of an iron depleted state is important for the control of nutritional anemia8.

Plasma ferritin is a measure of iron stores and the best single test to confirm iron deficiency. Low hemoglobin concentration is most readily available sign of anemia, but a significant fall in circulating hemoglobin cannot be detected until the final stage of iron deficiency9.

The prevalence of primary hypothyroidism is 1:100, but increases to 5:100 if patients with sub-clinical hypothyroidism are included. The female: male ratio is approximately 6:110.

Iron supplementation improves the efficacy of iodized salt in goitrous children with iron deficiency in Cote d’Ivoire11. An interventional study in goitrous, iron deficient anemic children showed that iron supplementation may improve the efficacy of oral iodized oil12. An interventional double blind controlled trial with dual fortified salt containing iodine and micro-encapsulated iron in
northern Moroccan school children showed that a dual fortified salt can be an effective fortification strategy13.

In our country, the prevalence of both iron deficiency anemia and hypothyroidism are higher than other developed countries. Due to ignorance and carelessness, many overt hypothyroid and sub-clinical hypothyroid patients remain undiagnosed. Our study was designed to see the status of thyroid hormone in patients with low ferritin level. Iron deficient patients were diagnosed by serum ferritin level <12 µg/L irrespective of age and sex. Iron deficiency anemia is an advanced stage of iron depletion. Complete treatment of iron deficiency anemia (IDA) will decrease the prevalence of iron deficiency and also decrease the burden of hypothyroidism from society. A cross sectional study on children of iron deficiency in Iran showed that iron deficiency is associated with high prevalence of goiter in Iranian school children14.

Therefore the present case-control study was designed to find out the relationship of thyroid hormone status with iron deficient patients in Bangladeshi population.

Materials & Methods

This case-control study was carried out from July 2006 to June 2007 in the Department of Biochemistry, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka. In this study total 72 subjects were selected from out patient department of the hospital. Patients with low serum ferritin level (serum ferritin level <12 µg/L irrespective of age and sex) were considered as cases and healthy persons with normal serum ferritin level16 (serum ferritin level in male is 30-300 µg/L and in female is 20-120 µg/L) was considered as controls. Patients having pregnancy, known iodine deficiency, positive for Anti-TPO and Anti-TG, hepatic disorder and renal diseases were excluded from the study. Relevant informations- collected from history, physical findings and laboratory investigations were recorded in predesigned data sheet. The whole procedure was explained to each patient and a written consent was taken from him or his attendant. Permission was taken from the concerned Ethical Committee.

With all aseptic precautions 5 ml of morning blood were collected from the median cubital vein of all study subjects by disposable plastic syringe. The needle was detached from the nozzle and blood was transferred immediately into dry clean plastic test tubes and was allowed to clot. Then the test tube was centrifuged. Separated sera were collected into plastic micro centrifuge tubes were labeled appropriately and were stored in ultra freezer at -35\textdegree C until analysis. Spot urine was collected in dry clean test tubes for estimation of urinary iodine.

Unpaired t-test and Pearson’s correlation test were performed. Level of significance was expressed as p value. P value of <0.05 was considered as significant.

Results & Observations

To evaluate the thyroid hormone status in iron deficient patient a total of seventy two subjects of both sexes were selected for this study of which thirty six were iron deficient patients (male-14 and female-22) and thirty six were normal healthy controls (male-14 and female-22). Mean±SD of age among cases and controls were 32.75±10.36 and 34.69±12.24 years with the range of 16-60 years and 15-60 years respectively. There was no significant difference with respect of age distribution in cases and controls (p>0.05)(Table I).

Mean±SD values of serum ferritin concentrations in cases and controls were 6.78±4.05 µg/L and 79.04±28.08 µg/L respectively. There was highly significant difference of serum ferritin between cases and controls (p<0.001) (Table II, Fig 1).

Mean±SD of serum TSH concentrations in cases and controls were 3.32±1.54 mIU/L and 1.89±0.86 mIU/L respectively. Mean±SD of
serum FT₄ concentration in cases and controls were 11.66±1.77 pmol/L and 13.10±1.36 pmol/L respectively. Mean±SD of serum FT₃ in case and controls were 3.00±0.68 pmol/L and 3.31±0.61 pmol/L respectively (Table III).

Serum TSH concentrations between cases and controls showed highly significant difference (p<0.001). Serum FT₄ concentration between cases and controls showed highly significant difference (p<0.001). There was significant difference of serum FT₃ between case and controls (p <0.05) (Table III).

Table I: Comparison of age in cases and controls

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean ± SD</th>
<th>"t" value</th>
<th>"p" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>32.75 ± 10.36</td>
<td>0.737</td>
<td>> 0.05*</td>
</tr>
<tr>
<td>Control</td>
<td>34.69 ± 12.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* No significant difference.

Table II: Serum ferritin concentrations in study subjects

<table>
<thead>
<tr>
<th>Group</th>
<th>S. Ferritin (µg/L) Mean ± SD</th>
<th>"t" value</th>
<th>"p" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>6.78 ± 4.05</td>
<td>15.28</td>
<td><0.001*</td>
</tr>
<tr>
<td>Control</td>
<td>79.04 ± 28.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Highly significant difference

Table III: Comparison of serum TSH, FT₄ and FT₃ concentration in study subjects.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Case (n = 36)</th>
<th>Control (n = 36)</th>
<th>"t" value</th>
<th>"P" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH mIU/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>3.32 ± 1.54</td>
<td>1.89 ± 0.86</td>
<td>4.87</td>
<td><0.001 HS</td>
</tr>
<tr>
<td>FT₄ pmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>11.66±1.77</td>
<td>13.10 ±1.36</td>
<td>3.88</td>
<td><0.001 HS</td>
</tr>
<tr>
<td>FT₃ pmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>3.00 ± 0.68</td>
<td>3.31 ± 0.61</td>
<td>3.51</td>
<td><0.05 *</td>
</tr>
</tbody>
</table>

HS: Highly significant difference

Serum ferritin and serum TSH in control subjects revealed that there was significant negative correlation (r = -0.480, p <0.01). In iron deficient patients there was negative correlation between serum ferritin and serum TSH but it was not statistically significant (r was -0.224 and p >0.05) (Table IV, Fig: 2 & 3).

Serum ferritin and serum FT₄ concentrations in iron deficient patient revealed positive correlation but not statistically significant (r was 0.273 and p >0.05). Serum ferritin and serum FT₄ concentration in controls also showed positive correlation but that was not statistically significant (r was 0.211 and p >0.05) (Table V, Fig: 4 & 5).

There was no significant correlation between serum ferritin and serum FT₃ concentration in cases (r was 0.033 and p >0.05). There was also no significant correlation between serum ferritin and serum FT₃ level in controls (r was 0.101 and p > 0.05) (Table VI, Fig: 6 & 7).

Table VI: Correlation between serum Ferritin and TSH in study subjects.

<table>
<thead>
<tr>
<th>Group</th>
<th>S. Ferritin µg/L Mean ± SD</th>
<th>S. TSH pmol/L Mean ± SD</th>
<th>"r" value</th>
<th>"p" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>6.78 ± 4.05</td>
<td>3.32 ± 1.54</td>
<td>-0.224</td>
<td>> 0.05*</td>
</tr>
<tr>
<td>Control</td>
<td>79.04±28.08</td>
<td>1.89 ± 0.86</td>
<td>-0.480</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Fig 1: Serum ferritin concentrations in study subjects
Table V: Correlation between serum Ferritin and FT4 in study subjects

<table>
<thead>
<tr>
<th>Group</th>
<th>S. Ferritin</th>
<th>S. FT4</th>
<th>"r" value</th>
<th>"p" value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/L</td>
<td>pmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>6.78 ± 4.05</td>
<td>11.66 ± 1.77</td>
<td>+0.273</td>
<td>>0.05*</td>
</tr>
<tr>
<td>(n = 36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>79.04 ± 28.08</td>
<td>13.10 ± 1.36</td>
<td>+0.211</td>
<td>>0.05*</td>
</tr>
<tr>
<td>(n = 36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not statistically significant difference.
MS: Moderately significant difference.

Table VI: Correlation between serum Ferritin and FT3 in cases and in controls.

<table>
<thead>
<tr>
<th>Group</th>
<th>S. Ferritin</th>
<th>S. FT3</th>
<th>"r" value</th>
<th>"p" value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/L</td>
<td>pmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>6.78 ± 4.05</td>
<td>3.00 ± 0.68</td>
<td>+0.033</td>
<td>>0.05*</td>
</tr>
<tr>
<td>Control</td>
<td>79.04 ± 28.08</td>
<td>3.31 ± 0.61</td>
<td>+0.101</td>
<td>>0.05*</td>
</tr>
</tbody>
</table>
Our study showed that the serum TSH levels were within lower level of normal reference range in healthy subjects. But in iron deficient patients the serum TSH level were at upper limit of normal reference range. It is observed that serum TSH concentrations were significantly higher in cases compared to controls (p<0.001). This result is consistent with the study by Blum and Blum16. They showed that TSH level were significantly higher in the iron deficient group than the control though they remained within normal range. Our study showed that there was negative correlation of serum ferritin with serum TSH in iron deficient patients but that was not statistically significant (p>0.05). There was significant negative correlation between serum ferritin and serum TSH in controls (p<0.05).

Discrepant views had been shown by some studies that the thyroid profile was not significantly affected in iron deficient patients. The survey in Turkey by Yavuz et al17 showed no correlation between iron status and thyroid hormone levels in school children. Another study in Thailand by Tienboon and Unachak18 showed that the thyroid hormones of IDA children before and after iron treatment were not significantly different from the control children. These variations may be due to different geographic distribution and different demographic characteristics of patients under study.

Our study suggested that the significant difference in thyroid hormone status in iron deficient people could be a reflection of disturbed activities of iron depended enzymes such as thyroid peroxidase that impairs thyroid hormone metabolism.

References

