OPEN ACCESS Freely available online

http://www.banglajol.info/index.php/BJID/index

Review Article

Bangladesh Journal of Infectious Diseases

June 2025, Volume 12, Number 1, Page 151-158

ISSN (Online) 2411-670X ISSN (Print) 2411-4820 NLM ID: <u>101761093</u>

DOI: https://doi.org/10.3329/bjid.v12i1.83987

Banghdesh Journal of Infectious Diseases BJID December 2020 Volume 7, fourther 2

Scabies Prevalence and Management in Bangladesh: A Narrative Review

Rasel Ahmed¹, Majedul Hoque², Md. Nahid Hasan³

¹MS in Pharmaceutical Sciences, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh; ²MS in Pharmaceutical Sciences, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh; ³PhD, Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Ohio, USA

Abstract

A parasitic skin illness, scabies disproportionately affects underprivileged population. Significant morbidity is brought on by the illness, which also includes immune-mediated illness and serious bacterial infections. *Sarcoptes scabiei* is an obligatory parasite of human skin, is the cause of the infectious illness scabies. People of all ages, genders, and socioeconomic backgrounds are impacted by the disease. Direct contact with an infected individuals and personal objects like clothing and bed linens are the primary ways that the infection is spread. The etiology of scabies in Bangladesh is linked to environmental pollution, poor living conditions, personal hygiene, water sanitation, and socioeconomic profile. Thus, the goal of this review was to represent the prevalence of scabies, its contributing causes, illness characteristics, diagnosis and management, and other relevant things. [Bangladesh Journal of Infectious Diseases, June 2025;12(1):151-158]

Keywords: Scabies; Prevalence; Infestation; Management; Sarcoptes scabiei

Correspondence: Majedul Hoque, MS in Pharmaceutical Sciences, Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh; Email: majed.pharmju44@gmail.com; ORCID: https://orcid.org/0009-0001-9044-411X Cell No.: +8801795732149

©Authors 2025. CC-BY-NC

Introduction

Scabies mostly found in lower- and middle-income nations in sub-Saharan Africa and South-East Asia, is one of the neglected tropical diseases. Every year, this illness affects about 565 million individuals globally, mostly children¹. It has significant negative impact on the expense of therapy, job or school, and psychology². According to its etiology, *Sarcoptes scabiei* var. hominis is the causative

agent of scabies, an infectious skin disease. This infection is spread by coming into close, continuous contact with infected skin or by handling contaminated personal items³.

The most common clinical sign is crippling itching and scratching, which is followed by bacterial infection-related problems such cellulitis, impetigo, and abscesses, as well as a breakdown of the skin barrier function⁴.

Social attitudes, migration, access to healthcare, housing environment, hygienic conditions, and crowding all have an impact on the spread of scabies. Common risk factors for scabies include living in cramped quarters, sleeping together, sharing clothing and towels, not practicing good hygiene, being malnourished, and visiting places where scabies outbreaks are occurring⁵⁻⁶. The most frequent sufferers of scabies are children from lower socioeconomic backgrounds, particularly those who reside in filthy, congested settings like boarding schools and urban slums. Because of their tight quarters and the crowded living conditions, the infection frequently spreads quickly among these kids⁷. Additionally, these people are difficult to treat because to limited access to healthcare, delayed diagnosis, poor treatment compliance, malnourishment, related bacterial and allergy diseases, and insufficient follow-up⁸.

Scabies is still one of the most significant underrecognized worldwide health issues, despite its high prevalence, particularly in lower- and middleincome nations. For instance, according to a study, about 77.0% of children in Bangladesh have had scabies⁹. Despite the nation's epidemiological transition and the growing burden of noncommunicable diseases, the overall frequency of scabies among a few specific groups, such as urban slums and residential religious schools, remained essentially unchanged¹⁰. The majority of homes and environmental facilities have subpar conditions, with crowded and unclean living quarters that put inhabitants at risk for scabies. Knowing the prevalence, treatment, and risk factors of scabies infection in Bangladesh's broader community may help direct the implementation of additional preventative measures. Thus, the goal of the current article was to represent the prevalence of contributing scabies, its causes, illness characteristics, and management, and other relevant things.

Prevalence of scabies in Bangladesh

The socio-demographic characteristics of children infested with community-acquired scabies in

densely populated residential Madrasahs in and around Dhaka were studied by Karim et al¹⁰ in their community-based survey conducted in 2007. They concluded that immediate attention should be given to Madrasah children to develop sustainable longterm intervention programs to combat scabies hyperendemicity (silent epidemics) and save thousands of those children from impending serious complications¹⁰. According to Moniruzzaman et al¹¹ scabies infection management among outdoor patients at BIRDEM General Hospital in Dhaka is more prevalent in crowded settings and is said to impact anyone, regardless of social standing, personal hygiene, occupation, gender, age, or ethnicity. However, they stated that Bangladesh still has a moderate level of classical scabies (Table 1).

According to a study conducted in Bangladesh, patients experienced social isolation and feelings of embarrassment as a result of the stigma and shame surrounding scabies, which had a moderate impact on their quality of life. Compared to children, all of these abnormalities were more commonly seen in adult patients¹². Prior to the intervention, the prevalence of scabies in Bangladeshi madrasahs was 61.0% and 62.0%, but following widespread scabies treatment, the prevalence dropped to 5.0% and 50.0%. The intervention at madrasahs also significantly improved personal hygiene behaviors¹³. Important information about the environmental, clinical, and sociodemographic aspects linked to scabies infection is provided by another study. The results showed that among forcibly displaced Myanmar nationals residing in Cox's Bazar district in Bangladesh, multiple factors, such as age, marital status, education level, prior scabies and skin infections, family history, living conditions, animal contact, dust exposure, and seasonal variations, are linked to scabies infection¹⁴. A recent study showed that children residing in Dhaka, Bangladesh's madrasahs, or Islamic boarding schools, have a high prevalence of scabies. Scabies was substantially linked to factors including male gender, early puberty overcrowding, sharing personal belongings, poor cleanliness, and close contact with infected persons¹⁵.

Table 1: Summarized Results from Literature/Study Conducted in Bangladesh

Study type	Year	Area	Findings	Reference
Pediatric	2007	Bangladesh	Many children are infested with	Karim et al ¹⁰
Research			community-acquired scabies in densely populated residential Madrasahs in and around Dhaka.	

Study type	Year	Area	Findings	Reference
Original Research	2020	Bangladesh	Scabies is more prevalent in areas with high population density; it can afflict	Moniruzzaman et al ¹¹
Research			anyone, regardless of socioeconomic	et ai
			standing, personal hygiene, occupation,	
			gender, age, or ethnic background.	
			Classical scabies is more prevalent in	
			Bangladesh as a mild type.	
Cross Sectional	2022	Bangladesh	Patients' quality of life was moderately	Baker et al ¹²
Study			impacted by the stigma and shame	
			associated with scabies, which caused	
			them to feel socially isolated and embarrassed.	
Survey	2013	Bangladesh	Prior to the intervention, the prevalence of	Talukder et al ¹³
Research	2013	Dangiadesii	scabies in Bangladeshi madrasahs was	Tatukuci et ai
Research			61.0% and 62.0%, but following	
			widespread scabies treatment, the	
			prevalence dropped to 5.0% and 50.0%.	
Original	2024	Bangladesh	Lot of Myanmar nationals residing in	Rahman et al ¹⁴
Research			Cox's Bazar district in Bangladesh	
			affected by scabies infection.	15
Original	2024	Bangladesh	This study showed that children residing	Hasan et al ¹⁵
Research			in Dhaka, Bangladesh's madrasahs, or	
			Islamic boarding schools, have a high	
			prevalence of scabies.	

Transmission and Complications

Even though scabies is an old disease, we still don't fully understand how it spreads. Investigating the relative effects of various control measures, life cycle of mite including through mathematical requires an understanding modeling, of transmission dynamics¹⁶. Herd immunity was earlier suggested by the known cycles of scabies occurrence in some temperate environments, which gave rise to the misleading moniker "7-year itching." Recurrent infestations, on the other hand, are frequent in many tropical environments and manifest symptoms earlier than the first infection¹⁷. Some of these environments maintain extremely high population frequency, indicating that variables other than herd or personal immunity are more likely to account for differences over time and across geographic regions¹⁸⁻¹⁹.

The participation of people with the uncommon clinical variety crusted scabies (formerly known as Norwegian scabies), which is typically linked to immunosuppression (disease- or drug-related) or neurological disorder, is particularly significant in terms of transmission. In certain populations, people with crusted scabies serve as key transmitters since they are extremely contagious

and can carry dozens to millions of mites²⁰. The effectiveness of control programs may be jeopardized if these persons are difficult to identify and manage²¹. Though very few cases of crusted scabies have been reported in other high prevalence settings, it is unclear why the disease is so common in northern Australia despite the lack of known immunosuppressive factors²²⁻²³.

More research is required to determine the pathogenic connections between scabies, impetigo, the infectious complications of Staphylococcus aureus and Streptococcus pyogenes, and the immune-mediated problems of Streptococcus pvogenes. The case for investing in scabies control will be stronger for governments, possible funders, and other stakeholders if these high-mortality conditions can be more conclusively connected to scabies and can be demonstrated to be efficiently averted through scabies control²⁴⁻²⁶. The Pacific region, where impetigo is highly prevalent, has given the most extensive consideration of the pertinent relationships; nevertheless, the few data from other regions indicate that endemic scabies occurs in situations where impetigo frequency is lower. This pattern must be accurately measured, and if there is a deviation, then should be investigated further²⁷. Streptococcus pyogenesinduced impetigo is a leading cause of acute

glomerulonephritis, which raises the prevalence of chronic kidney disease in low-income areas²⁸. According to estimates, rheumatic heart disease kills over 300,000 people annually, and its global distribution crosses over into regions where scabies is quite common²⁹. In 2018, a global resolution on rheumatic heart disease and fever was accepted by the World Health Assembly³⁰. Scabies control may be a key element in preventing these illnesses by preventing streptococcal skin infections in the first place³¹.

Clinical Features

Clinical signs of scabies in humans can resemble a variety of different skin conditions, including contact dermatitis, eczema, itching, impetigo, fungal infections, and allergic reactions, making diagnosis challenging³². The incubation period for scabies lasts between four to six weeks, though it could be quicker if there is a significant initial infection. Therefore, before therapy is started, the affected individuals become a source of infection. As a result, everyone living together, including family members, should receive treatment³³. According to research by Johnson and Mellanby³⁴, individuals who exhibit almost no symptoms may actually have a significant parasite infection, but even those with a low parasite infestation may exhibit considerable clinical indications. secondary infection frequently arises if scabies is not treated properly. A secondary infection caused by Staphylococcus aureus and A. streptococci results in pyoderma³⁵.

Pruritus is one of the primary presenting symptoms, and it gets worse at night. Rarely, skin lesions with diagnostic value manifest as normal comma-like or irregular hole that range in size from a few millimeters to a few centimeters. A female scabies mite digs the tunnels, positioning herself at the end of the tunnel³⁶. Typical lesions in newborns and young children, such as vesicles, pustules, and nodules, typically dispersed are unevenly, appearing on the hands, feet, and in the folds of the body. Infants may also have problems with their head, hands, and foot soles, unlike older kids and adults^{37, 38}. Scabies is frequently misdiagnosed in the elderly because the itching may be mistakenly attributed to senile pruritus, which could complicate the diagnosis process³⁹. Round, smooth nodules that are 5-8 mm in diameter and have red (or reddish) and brownish coloring are the initial appearance of skin lesions. The lesions never affect the hands or feet, but they are prevalent in places with extremely thin skin, like the genitalia or inguinal folds⁴⁰. Based on the findings of earlier

research, no mites were found in the nodules, and it is believed that these nodules are the consequence of a delayed hypersensitive reaction to the mites rather than an active infection⁴¹. This is a somewhat rare kind of scabies that typically affects the elderly. It may resemble bullous pemphigoid both histologically and clinically, and even in the presence of immunofluorescence results. When the parasite or its feces are not visible on epidermal scrapings, the diagnosis becomes even more challenging⁴²⁻⁴³. The following are the main risk factors for this infectious disease and its frequent spread: living in close quarters with other families, poverty and low parental educational attainment, sharing personal items like floor mats, bed linens, and sheets, poor personal hygiene, poor bathing, low socioeconomic status, and so forth.

Diagnosis of Scabies

The lack of a dependable, repeatable, and standardized method of diagnosis hinders both population-level control and scabies mapping. Approaches to diagnosing scabies systematic inconsistent. according to two assessments of diagnostic techniques 44-46. Although skin scraping microscopy is quite specific, it is insensitive and operator dependent, making it generally useless in open area to visualize mites and eggs. The 2018 IACS Criteria for Scabies Diagnosis in Research and Epidemiological Settings were developed by an international panel of experts called by the International Alliance for the Control of Scabies (IACS) using a Delphi consensus process in order to close this gap⁴⁷. These standards allow for the identification and reporting of scabies in three diagnostic certainty bands: clinical, suspected, and confirmed. The mite must be identified using microscopy or non-invasive visualization methods like dermoscopy and videomicroscopy in order to diagnose confirmed scabies⁴⁸. The classification of clinical and suspected scabies is based on characteristics of the clinical examination and history. As a result, the criteria can be modified for application in a range of contexts, such as field surveys, and may aid in standardizing the reports and improving research methodology. It is now necessary to validate these requirements in various contexts before creating standardized training materials and techniques⁴⁹.

Molecular methods such as PCR⁵⁰ and loop-mediated isothermal amplification⁵¹ have been proposed for direct skin-based testing for infestation, but none of these are yet ready for programmatic application. Antigens from scabies and house dust mites are cross-reactive, which has

impeded the development of ELISA-based techniques to detect antibodies against scabies antigens⁵². Serodiagnosis is one recent development in this field that shows rises hope, but further study is needed to assess its effectiveness at clinical settings in tropical area⁵³.

Major Impact of Scabies in Bangladesh

Scabies is a major public health concern, especially in refugee camps and densely populated areas of Bangladesh. Skin sores, bacterial infections (like impetigo), and possibly more serious illnesses like glomerulonephritis and rheumatic heart disease can result from excessive itching and scratching. Scabies affecting social relationships and quality of life by causing anxiety, despair, and shame. Children may experience social isolation and bullying. Because of the tight quarters and hygienic measures, studies have revealed a significant frequency of scabies at madrasahs, or Islamic religious institutions in Bangladesh. People in crowded environments, children, and teenagers are particularly impacted. Scabies is far more common in refugee camps, underscoring the effect of living circumstances. Scabies causes severe itching, which makes disruption in sleeping and affecting daily activities.

Management and Prevention of Scabies

For scabies, there are a number of suggested treatment methods. Topical medications (Table 2) are the initial line of treatment and must be applied all over the body for several hours⁵⁴. Over the course of days to weeks, several treatment doses are frequently advised. It might be necessary to

administer topical or oral antibiotics if a secondary skin infection has emerged⁵⁵. Close contacts of scabies patients should also receive treatment concurrently, as they may be infected without exhibiting symptoms yet and they can serve as an infection reservoir⁵⁶. Since treating all contacts at once necessitates identifying and caring for each contact (such as family members, other coinhabitants, medical and other supporting workers, and those who may come into contact with the index cases), the logistics are important.

In many countries, oral ivermectin has not been authorized for the treatment of scabies⁵⁷, and it is not generally used in Bangladesh but topical permethrin formulations are commonly used. Currently, there are some observational proofs that it works well to contain scabies epidemics in nursing homes and other institutional settings⁵⁸. Ivermectin is ineffective against the younger stages of the parasite (whose nervous system is underdeveloped), is not ovicidal, and cannot sufficiently penetrate the thick egg shell of the scabies mite, which causes a delayed therapeutic response⁵⁹. Due to the irritating effects of the different formulations, persistent post-scabies eczema (generalized eczematous dermatitis) is the most common side effect of topical scabicides⁶⁰. These could exacerbate delayed-type eczema and xerosis. Furthermore, as currently available topical scabicidal agents like permethrin, lindane, benzoyl peroxide, and sulphur can cause serious cutaneous and systemic side-effects in addition to the issue of non-compliance, which results in poor treatment treating patients with secondary eczematization, erosions, or ulcers may be challenging.

Table 2: Topical Treatment Options Used for Scabies Management

Study type	Cure Rate	Treatment	References
		Regimen	
Clinical exploratory study	48.0% (10/21)	Benzyl benzoate	Nnoruka and Agu ⁶¹
		(22.5%)	
Case study	12.0% (23/195)	Benzyl benzoate	Yonkosky et al ⁶² ;
		(50.0%)	Thomas et al ⁶³
In vitro study and systemic	-	Permethrin	Mbuagbaw et al ⁶⁴ ;
review analysis			Mounsey et al ⁶⁵
Review	Acaricidal effects against scabies	Tea tree oil	Thomas et al ⁶⁶
	mites		
In vitro study		Permethrin 5.0%	Pasay et al ⁶⁷
Review	Compared the efficacy of	Permethrin 5.0%	Rosumeck et al ⁶⁸
	permethrin with ivermectin		
In vivo study	Crotamiton	10.0% cream	Mila-Kierzenkowska
			et al ⁶⁹

Campaigns to raise awareness is essential in Bangladesh for controlling and avoiding scabies epidemics, particularly in congested places like religious boarding schools and refugee camps. Preventing the spread of scabies requires a strong emphasis on good personal hygiene habits, such as frequent hand washing and refraining from sharing personal belongings. People must learn about the signs and symptoms of scabies and how the disease is spread through close, prolonged skin contact. Access to sanitary facilities, soap, and clean water can all help to stop the spread of scabies. Making separate room for people and families can help to lower the likelihood of intimate physical contact. Medication distribution, like topical permethrin, can help to maintain outbreaks, but it should be combined with actions to address unhygienic circumstances.

Conclusion

of all ages, genders, lower People and socioeconomic backgrounds are impacted by the disease. Direct contact with an infected individuals and personal objects like clothing and bed linens are the primary ways that the infection is spread. The etiology of scabies in Bangladesh is linked to environmental pollution, poor living conditions, hygiene, water sanitation, personal socioeconomic profile. Further defining the burden of disease, creating standardized methods for diagnosis and population burden estimation, developing innovative diagnostics and therapies, assessing extensive community measures are among most needed steps in Bangladesh. It is now necessary to provide interim scabies control guidelines.

Acknowledgments

None

Conflict of Interest

The authors have no relevant conflicts of interest to declare.

Financial Disclosure

None

Authors' contributions

Conceptualization: RA, MH, MNH; Data curation: RA, MH; Formal analysis: RA, MH, MNH; Project administration: RA, MH, MNH; Supervision: RA, MH; Visualization: RA, MH, MNH; Writing original draft: RA, MH, MNH; Writing-reviewing & editing: RA, MH, MNH; Data availability: Not applicable; All authors read and approved the final manuscript.

Data Availability

Any inquiries regarding supporting data availability of this study should be directed to the corresponding author and are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate Not applicable

Copyright: © Ahmed et al. 2025. Published by *Bangladesh Journal of Infectious Diseases*. This is an open-access article and is licensed under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this license, please see: https://www.creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Ahmed R, Hoque M, Hasan MN. Scabies Prevalence and Management in Bangladesh: A Narrative Review. Bangladesh J Infect Dis 2025;12(1):141-148

ORCID

Rasel Ahmed: https://orcid.org/0009-0005-8754-0687
Majedul Hoque: https://orcid.org/0009-0001-9044-411X
Md. Nahid Hasan: https://orcid.org/0000-0002-6409-3272

Article Info

Received on: 1 March 2025 Accepted on: 20 April 2025 Published on: 1 June 2025

References

- 1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct 17; 396(10258):1204-1222.
- 2. Abolfotouh MA, Al-Khowailed MS, Suliman WE, Al-Turaif DA, Al-Bluwi E, Al-Kahtani HS. Quality of life in patients with skin diseases in central Saudi Arabia. Int J Gen Med 2012; 5:633–42.
- 3. Andrews RM, McCarthy J, Carapetis JR, Currie BJ. Skin disorders, including pyoderma, scabies, and tinea infections. Pediatr Clin North Am 2009; 56:1421–40.
- 4. Hicks MI, Elston DM. Scabies. Dermatol Ther 2009; 22:279–92.
- 5. Dagne H, Dessie A, Destaw B, Yallew WW, Gizaw Z. Prevalence and associated factors of scabies among schoolchildren in Dabat district, Northwest Ethiopia, 2018. Environ Health Prev Med 2019; 24:67.
- 6. Kouotou EA, Nansseu JRN, Kouawa MK, Zoung-Kanyi Bissek AC. Prevalence and drivers of human scabies among children and adolescents living and studying in Cameroonian boarding schools. Parasit Vectors 2016; 9:400.
- 7. Sanei-Dehkordi A, Soleimani-Ahmadi M, Zare M, Jaberhashemi SA. Risk factors associated with scabies infestation among primary schoolchildren in a low socioeconomic area in Southeast of Iran. BMC Pediatr 2021; 21:249.
- 8. Agrawal S, Puthia A, Kotwal A, Tilak R, Kunte R, Kushwaha AS. Mass scabies management in an orphanage of rural community: an experience. Med J Armed Forces India 2012; 68:403–6.
- 9. Stanton B, Khanam S, Nazrul H, Nazrul H, Nurani S, Khair T. Scabies in urban Bangladesh. J Trop Med Hyg 1987; 90:219–26
- 10. Karim SA, Anwar KS, Khan MAH, Mollah MA, Nahar N, Rahman HE et al. Socio-demographic characteristics of children infested with Scabies in densely populated communities of residential Madrashas (Islamic education

- institutes) in Dhaka, Bangladesh. Public Health 2007; 121:923-34.
- 11. Moniruzzaman KM, Nazrul IM, Khanum H, Maria FU. Prevalence of Viral Disease among Diabetic Subjects Attending BIRDEM General Hospital OPD, Dhaka, Bangladesh. Clin Dermatol J 2020, 5(4): 000226.
- 12. Baker MA, Mondal NM, Islam MR, Khan MM, Hossain MM Hasan MQ. Clinical Profile and Quality of Life in Scabies Patients-A Study in Enam Medical College and Hospital, Savar, Dhaka, Bangladesh. Adv. Med. Dental Health Sci. 2022; 5(3):34-38.
- 13. Talukder K, Talukder MQ, Farooque MG, Khairul M, Sharmin F, Jerin I, Rahman MA. Controlling scabies in madrasahs (Islamic religious schools) in Bangladesh. Public Health. 2013; 127(1):83-91.
- 14. Rahman MS, Hasan ABMN, Jahan I, Sharif AB. Prevalence of scabies and its associated environmental risk factors among the Forcibly Displaced Myanmar Nationals living in the Cox's Bazar district of Bangladesh. J Migr Health. 2024; 9:100220.
- 15. Hasan MJ, Rafi MA, Choudhury T, et al. Prevalence and risk factors of scabies among children living in Madrasahs (Islamic religious boarding schools) of Bangladesh: a cross-sectional study. BMJ Paediatrics Open 2024;8:e002421.
- 16. Lydeamore MJ, Campbell PT, Regan DG, Tong SYC, Andrews RM, Steer AC et al. A biological model of scabies infection dynamics and treatment informs mass drug administration strategies to increase the likelihood of elimination. Math Biosci 2019; 309: 163–73.
- 17. Arlian LG, Morgan MS. A review of Sarcoptes scabiei: past, present and future. Parasit Vectors 2017; 10: 297.
- 18. Mimouni D, Gdalevich M, Mimouni FB, Haviv J, Ashkenazi I. The epidemiologic trends of scabies among Israeli soldiers: a 28-year follow-up. Int J Dermatol 1998; 37: 586–87.
- 19. Savin JA. Scabies in Edinburgh from 1815 to 2000. J R Soc Med 2005; 98: 124-29.
- 20. Roberts LJ, Huffam SE, Walton SF, Currie BJ. Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J Infect 2005; 50: 375–81.
- 21. Kearns TM, Speare R, Cheng AC, McCarthy J, Carapetis JR, Holt DC et al. Impact of an ivermectin mass drug administration on scabies prevalence in a remote australian aboriginal community. PLoS Negl Trop Dis 2015; 9: e0004151.
- 22. Walton SF, Beroukas D, Roberts-Thomson P, Currie BJ. New insights into disease pathogenesis in crusted (Norwegian) scabies: the skin immune response in crusted scabies. Br J Dermatol 2008; 158: 1247–55.
- 23. Lokuge B, Kopczynski A, Woltmann A, Alvoen F, Connors C, Guyula T, et al. Crusted scabies in remote Australia, a new way forward: lessons and outcomes from the East Arnhem Scabies Control Program. Med J Aust 2014; 200: 644–48.
- 24. Engelman D, Hofer A, Davis JS, Carapetis JR, Baird RW, Giffard PM et al. Invasive Staphylococcus aureus Infections in children in tropical northern Australia. JPIDS 2014; 3: 304–11.
- 25. McDonald M, Currie BJ, Carapetis JR. Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect Dis 2004; 4: 240–45.
- 26. Carey AJ, Duchon J, Della-Latta P, Saiman L. The epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit, 2000-2007. J Perinatol. 2010 Feb; 30(2):135-9.
- 27. Romani L, Steer AC, Whitfeld MJ, Kaldor JM. Prevalence of scabies and impetigo worldwide: a systematic review. Lancet Infect Dis 2015; 15: 960–67.
- 28. Eison TM, Ault BH, Jones DP, Chesney RW, Wyatt RJ. Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol 2011; 26: 165–80.

- 29. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med 2017; 377: 713–722.
- 30. WHO. 71st World Health Assembly adopts resolution calling for greater action on rheumatic heart disease. May 25, 2018. http://www.who.int/ncds/management/rheumatic-heart-diseaseresolution/en/
- 31. Thornley S, Marshall R, Jarrett P, Sundborn G, Reynolds E, Schofield G. Scabies is strongly associated with acute rheumatic fever in a cohort study of Auckland children. J Paediatr Child Health 2018; 54: 625–32.
- 32. Orkin M. Resurgence of scabies. JAMA. 1971;217(5):593–597.
- 33. Heukelbach J, Walton SF, Feldmeier H. Ectoparasitic infestations. Curr Infect Dis Rep. 2005;7(5):373–380.
- 34. Ueda T, Katsura Y, Sasaki A, Minagawa D, Amoh Y, Shirai K. Gray-edged line sign of scabies burrow. J Dermatol. 2021; 48(2):190-198.
- 35. Heukelbach J, Wilcke T, Winter B, Feldmeier H. Epidemiology and morbidity of scabies and pediculosis capitis in resource-poor communities in Brazil. Br J Dermatol. 2005; 153(1):150–156.
- 36. Chosidow O. Scabies. N Engl J Med. 2006; 354:1718–1727.
- 37. Kutlubay Z, Tanakol A, Engýn B, Onel C, Sýmsek E, Serdaroglu S, Tuzun Y, Yilmaz E, Eren B. Newborn Skin: Common Skin Problems. Maedica (Bucur). 2017; 12(1):42-47.
- 38. Suwandhi P, Dharmarajan TS. Scabies in the nursing home. Curr Infect Dis Rep. 2015; 17(1):453.
- 39. Infectious Disease Associates of Tampa Bay. https://idatb.com/human-scabies-skin-mites (Accessed, 5 May 2025)
- 40. Hicks MI, Elston DM. Scabies. Dermatol Ther. 2009; 22(4):279–292.
- 41. Fernandez N, Torres A, Ackerman AB. Pathologic findings in human scabies. Arch Dermatol. 1977; 113(3):320–324
- 42. Alexander JO. Scabies. In: Arthropods and human skin. Berlin: Springer; 1984:227–292.
- 43. Engelman D, Yoshizumi J, Hay RJ, Osti M, Micali G, Norton S, Walton S, Boralevi F, Bernigaud C, Bowen AC, Chang AY. The 2020 international alliance for the control of scabies consensus criteria for the diagnosis of scabies. Brit J Dermatol. 2020; 183(5):808-20.
- 44. Al-Dabbagh J, Younis R, Ismail N. The current available diagnostic tools and treatments of scabies and scabies variants: An updated narrative review. Medicine (Baltimore). 2023; 102(21):e33805.
- 45. Leung V, Miller M. Detection of scabies: a systematic review of diagnostic methods. Can J Infect Dis Med Microbiol. 2011; 22: 143–46.
- 46. Thompson MJ, Engelman D, Gholam K, Fuller LC, Steer AC. Systematic review of the diagnosis of scabies in therapeutic trials. Clin Exp Dermatol 2017; 42: 481–87.
- 47. Engelman D, Fuller LC, Steer AC. Consensus criteria for the diagnosis of scabies: a Delphi study of international experts. PLoS Negl Trop Dis 2018; 12: e0006549.
- 48. Micali G, Lacarrubba F, Verzi AE, Chosidow O, Schwartz RA. Scabies: advances in noninvasive diagnosis. PLoS Negl Trop Dis 2016; 10: e0004691.
- 49. Engelman D, Cantey PT, Marks M, Solomon AW, Chang AY, Chosidow O et al., The public health control of scabies: priorities for research and action. Lancet. 2019; 394(10192):81-92.
- 50. Hahm JE, Kim CW, Kim SS. The efficacy of a nested polymerase chain reaction in detecting the cytochrome c oxidase subunit 1 gene of Sarcoptes scabiei var hominis for diagnosing scabies. Br J Dermatol 2018; 179: 889–95.

- 51. Fraser TA, Carver S, Martin AM, Mounsey K, Polkinghorne A, Jelocnik M. A Sarcoptes scabiei specific isothermal amplification assay for detection of this important ectoparasite of wombats and other animals. Peer J 2018; 6: e5291.
- 52. Arlian LG, Morgan MS. A review of Sarcoptes scabiei: past, present and future. Parasit Vectors 2017; 10: 297.
- 53. Jayaraj R, Hales B, Viberg L, Pizzuto S, Holt D, Rolland JM, et al. A diagnostic test for scabies: IgE specificity for a recombinant allergen of Sarcoptes scabiei. Diagn Microbiol Infect Dis. 2011;71(4):403–7.
- 54. FitzGerald D, Grainger RJ, Reid A. Interventions for preventing the spread of infestation in close contacts of people with scabies. Cochrane Database Syst Rev. 2014; 2:CD009943.
- 55. Wu X, Yang F, Zhang R. Frequent Misdiagnosis of Scabies as Eczema in China: A Descriptive Study of 23 Cases. Int J Gen Med. 2024; 17:1615-1623.
- 56. Sunderkötter C, Feldmeier H, Fölster-Holst R, Geisel B, Klinke-Rehbein S, Nast A et al. S1 guidelines on the diagnosis and treatment of scabies short version. J Dtsch Dermatol Ges. 2016; 14(11):1155-1167.
- 57. Bouvresse S, Chosidow O. Scabies in healthcare settings. Curr Opin Infect Dis. 2010; 23(2):111–8.
- 58. McLean FE. The elimination of scabies: a task for our generation. Int J Dermatol. 2013; 52(10):1215–23.
- 59. Usha V, Gopalakrishnan NT. A comparative study of oral ivermectin and topical permethrin cream in the treatment of scabies. J Am Acad Dermatol. 2000;42(2):236–40
- 60. Aždajić MD, Bešlić I, Gašić A, Ferara N, Pedić L, Lugović-Mihić L. Increased Scabies Incidence at the Beginning of the 21st Century: What Do Reports from Europe and the World Show? Life (Basel). 2022; 12(10):1598.

- 61. Nnoruka EN, Agu CE. Successful treatment of scabies with oral ivermectin in Nigeria. Trop Dr. 2001;31(1):15–8.
- 62. Yonkosky D, Ladia L, Gackenheimer L, Schultz MW. Scabies in nursing homes: an eradication program with permethrin 5 % cream. J Am Acad Dermatol. 1990;23(6 Pt 1):1133-6
- 63. Thomas J, Peterson GM, Walton SF, Carson CF, Naunton M, Baby KE. Scabies: an ancient global disease with a need for new therapies. BMC Infect Dis. 2015; 15:250.
- 64. Mbuagbaw L, Sadeghirad B, Morgan RL, Mertz D, Motaghi S, Ghadimi M et al. Failure of scabies treatment: a systematic review and meta-analysis. Br J Dermatol. 2024; 190(2):163-173.
- 65. Mounsey KE, Holt DC, McCarthy JS, Currie BJ, Walton SF. Longitudinal evidence of increasing in vitro tolerance of scabies mites to ivermectin in scabies-endemic communities. Arch Dermatol. 2009; 145(7):840–1.
- 66. Thomas J, Carson CF, Peterson GM, Walton SF, Hammer KA, Naunton M et al. Therapeutic Potential of Tea Tree Oil for Scabies. Am J Trop Med Hyg. 2016; 94(2):258-266.
- 67. Pasay C, Walton S, Fischer K, Holt D, McCarthy J. PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). AmJTrop Med Hyg. 2006; 74(4):649–57.
- 68. Rosumeck S, Nast A, Dressler C. Ivermectin and permethrin for treating scabies. Cochrane Database Syst Rev. 2018; 4(4):CD012994.
- 69. Mila-Kierzenkowska C, Woźniak A, Krzyżyńska-Malinowska E, Kałużna L, Wesołowski R, Poćwiardowski W et al. Comparative Efficacy of Topical Pertmehrin, Crotamiton and Sulfur Ointment in Treatment of Scabies. J Arthropod Borne Dis. 2017; 11(1):1-9.