OPEN @ ACCESS Freely available online

http://www.banglajol.info/index.php/BJID/index

Original Article

Bangladesh Journal of Infectious Diseases

June 2025, Volume 12, Number 1, Page 27-33

ISSN (Online) 2411-670X ISSN (Print) 2411-4820 NLM ID: 101761093

DOI: https://doi.org/10.3329/bjid.v12i1.83841

Status of Carbapenemase Encoding Genes among Imipenem Resistant *Acinetobacter baumannii* Isolated from Different Samples at a Tertiary Care Hospital in Bangladesh

Sharmeen Sultana¹, Md. Abdullah Yusuf², Momtaz Begum³, Tania Rahman⁴, Tarana Jahan⁵, Md. Asifudduza⁶, Hasbi Ara Mostofa⁷

¹Associate Professor, Department of Microbiology, Monno Medical College, Manikganj, Bangladesh; ²Associate Professor, Department of Microbiology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh; ³Associate Professor, Department of Microbiology, Ad-din Akij Medical College Hospital, Boyra, Khulna, Bangladesh; ⁴Associate Professor, Department of Microbiology, Khwaja Yunus Ali Medical College, Sirajganj, Bangladesh; ⁵Associate Professor, Department of Microbiology, Monno Medical College, Manikganj, Bangladesh; ⁶Consultant, Labaid Cardiac Hospital, Dhanmondi, Dhaka, Bangladesh; ⁷Assistant Professor, Department of Microbiology, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh

Abstract

Background: Nosocomial infections caused by carbapenem-resistant Acinetobacter baumannii are a global health problem. Objectives: The aim of this study was to investigate the molecular mechanisms of carbapenem resistance in Acinetobacter baumannii clinical isolates recovered from a tertiary care hospitals in Bangladesh. Methodology: This cross-sectional study was conducted in the Department of Microbiology of Dhaka Medical College and Hospital, Dhaka, Bangladesh over a period of one year from July 2015 to June 2016. Acinetobacter baumannii was isolated from different specimens and was identified and were screened for carbapenemase production using imipenem discs. Phenotypic identification of carbapenemase production was done by the double disc synergy (DDS) test, combined disc (CD) assay, and modified Hodge test (MHT). The minimum inhibitory concentration (MIC) of imipenem was determined by the agar dilution method. Genes encoding blaNDM-1, blaIMP, blaVIM and blaKPC were identified by polymerase chain reaction (PCR). Results: Twenty-one (80.8%) imipenem resistant Acinetobacter baumannii were detected among 26 isolates. Among 21 imipenem resistant Acinetobacter baumannii, 20(95.2%) carbapenemase producers were detected by PCR, 16(76.2%) by DDS test, 18 (85.7%) by CD assay and 5(23.8%) were detected by MHT. The blaNDM-1 gene was most prevalent 18 (85.7%) followed by blaVIM 14 (66.7%), blaIMP 8(38.1%) and blaKPC 5(23.8%). The minimum inhibitory concentration of imipenem of the imipenem resistant Acinetobacter baumannii ranged from ≥256 μg/ml to 8 μg/ml. Conclusion: This study shows a significant proportion (95.2%) of imipenem resistant Acinetobacter baumannii were carbapenemase producers. Genes encoding carbapenemase enzyme including blaNDM-1, blaVIM, blaIMP and blaKPC are responsible for imipenem resistance. [Bangladesh Journal of Infectious Diseases, June 2025;12(1):27-33]

Keywords: Carbapenemase; imipenem resistant; Acinetobacter baumannii

Correspondence: Dr. Sharmeen Sultana, Associate Professor, Department of Microbiology, Monno Medical College, Monno City, Gilondo, Manikganj, Bangladesh; Email: nila21786@gmail.com; Cell no.: +8801724819455; ORCID: https://orcid.org/0000-0002-0503-0693
©Authors 2025. CC-BY-NC

Introduction

Acinetobacter baumannii is an important opportunistic pathogen and is often involved in various nosocomial infections, such as bacteremia, urinary tract infection, surgical site infection, and nosocomial and ventilator associated pneumonia, especially in patients admitted Acinetobacter baumannii is notable for its remarkable innate and acquired resistance to multiple antimicrobial classes, including extendedspectrum cephalosporins and carbapenems. Resistance to carbapenems is the most concerning, as carbapenems have a potent activity against Acinetobacter species and are often used as a last resort for the treatment of infections due to resistant Acinetobacter baumannii multidrug isolates²⁻³.

Carbapenem resistance is mainly due to the expression of a carbapenemase enzyme, efflux pump, or porin loss. The most important and difficult mechanism is the production of the carbapenemase enzyme, because it is present on mobile genetic elements, which are easily transferable from one bacterium to another bacterium such Pseudomonas as species. Acinetobacter species, Escherichia coli (E. coli), and Klebsiella species, which the World Health Organization (WHO) has designated as high priority organisms in 2017⁴⁻⁶.

The vast majority of acquired carbapenemases belong to three of the four known classes of β -lactamases, namely Ambler class A enzymes such as *Klebsiella pneumoniae* carbapenemase (KPC) types, Ambler class B enzymes, or metallo- β -lactamases such as VIM, IMP, NDM-1 types and Ambler class D enzymes or oxacillinases such as OXA-23, OXA-48, OXA-181 types⁷⁻⁸.

Misuse and overuse of antibiotics is extremely common in Bangladesh due to lack of implication of proper guideline regarding the use of antibiotics. Selective pressure of antibiotics in Bangladeshi hospitals allows the preservation of MDR determinants not only in nosocomial pathogens but also in hospital environment⁹⁻¹⁰.

Bangladesh is the prevalent zone of antimicrobial resistance, which has been evidenced by previous studies. Previous reports suggest *Acinetobacter baumannii* as one of the important nosocomial pathogens in Bangladesh and the resistance determinants are incredibly frequent among the species¹¹⁻¹⁴. To explore the present situation of

nosocomial antimicrobial resistance in Bangladesh, this study evaluated the genetic background of carbapenem resistance among the nosocomial *Acinetobacter baumannii* in Bangladesh.

Methodology

Study Settings and Population: This cross-sectional study was carried out at Department of Microbiology in Dhaka Medical College (DMC), Dhaka, Bangladesh over a period of one year which was from July 2015 to June 2016. Tracheal aspirate, blood, urine and wound swab samples were collected from all recruited patients for microscopy, culture and sensitivity testing. Samples were collected from patients of all age groups, both sexes, who were critically ill and suspected for pneumonia, urinary tract infection, septicaemia, skin and soft tissue infection.

Study Procedure: Samples were inoculated on Blood Agar and MacConkey Agar plates under strict aseptic conditions. Plates were incubated at 37°C for 24 to 48 hours.

Isolation of Acinetobacter baumannii and antibiotic susceptibility test: Acinetobacter baumannii was identified and confirmed by Gram staining as Gram negative coccobacilli or cocci in pairs, non-motile, oxidase negative, Alkaline/Alkaline (K/K) reaction in Triple Sugar Iron (TSI) slant, catalase positive, Indole negative, Citrate utilization test positive, urease test negative. It showed Oxidative-Fermentative (O/F) test oxidative¹⁵⁻¹⁷. All isolated A. baumannii were tested for susceptibility to imipenem (10 µg) by disc method. Minimum inhibitory concentration (MIC) of imipenem was determined by agar dilution method¹⁸⁻¹⁹.

Phenotypic Detection of Carbapenemase Producers: Carbapenemase producers were phenotypically detected by DDS test and CD assay for MBL producers and MHT was used for detection of all carbapenemase producers among the isolated imipenem resistant *Acinetobacter baumannii*²⁰⁻²².

Detection of carbapenemase encoding genes by Polymerase chain reaction (PCR): Carbapenepase encoding genes (*bla*KPC, *bla*VIM, *bla*IMP, *bla*NDM-1) were detected among imipenem resistant *Acinetobacter baumannii* by PCR with the primers reported previously²³⁻²⁵. The sequence of the primers is shown in Table-1. In brief, PCR was performed in a final reaction volume of 25µl in a

PCR tube, containing 12.5µl of master mix (mixture of dNTP, taq polymerase, MgCl2 and PCR buffer), 2µl of forward primer, 2µl of reverse primer (Promega Corporation, USA), 2µl of DNA template and 6.5 µl of sterile distilled water. PCR assay was performed in Eppendorf AG thermal cycler. After initial denaturation at 94°C for 10 minutes, the reaction was subjected to 36 cycles. Each cycle consisted of denaturation at 94°C for 30 seconds, annealing at 52°C for 40 seconds and elongation at 72°C for 1 minute followed by final extension at 72°C for 10 minutes. The amplified DNA were loaded into a 1.5% agarose gel, electrophoreses at 100 volts for 35 minutes, stained with 1% ethidium bromide, and visualized under UV light.

Table 1: Sequence of Primers used for Detection of Carbapenemase Encoding Genes in *Acinetobacter baumannii* by PCR²³⁻²⁵

Genes	Sequence (5'-3')	bp
NDM1-F	GCGCAACACAGCCTGACTTT	155
NDM1-R	CAGCCACCAAAAGCGATGTC	
VIM-F	GATGGTGTTTGGTCGCATA	390
VIM-R	CGAATGCGCAGCACCAG	
IMP-F	GGAATAGAGTGGCTTAATCTC	188
IMP-R	CCAAACACTAGTTATCT	
KPC-F	CGTCTAGTTCTGCTGTCTTG	Variable
KPC-R	CTTGTCATCCTTGTTAGGCG	

Statistical Analysis: Statistical analysis was performed by Windows based software named as Statistical Package for Social Science (SPSS), versions 22.0 (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). Continuous data were expressed as mean, standard deviation, minimum and maximum. Categorical data were summarized in terms of frequency counts and percentages. Chi-square test was used for comparison of categorical variables and Student t test was applied for continuous variables. Every efforts were made to obtain missing data. A twosided P value of less than 0.05 was considered to statistical significance. indicate Differences between case and control were tested.

Ethical Consideration: All procedures of the present study were carried out in accordance with the principles for human investigations (i.e., Helsinki Declaration 2013) and also with the ethical guidelines of the Institutional research ethics. Formal ethics approval was granted by the local authority. Participants in the study were informed about the procedure and purpose of the study and confidentiality of information provided. All participants consented willingly to be a part of the

study during the data collection periods. All data were collected anonymously and were analyzed using the coding.

Results

Of the total 300 samples, 26(8.7%) Acinetobacter baumannii were isolated. Out of 26(8.7%) Acinetobacter baumannii, 21(80.8%) imipenem resistant strains were detected by disc diffusion method. Of them, 2(7.7%) were isolated from wound swab, 18(69.2%) from ETA and one (3.8%) from blood samples. No imipenem resistant Acinetobacter baumannii was isolated from urine samples (Table 2). MIC of imipenem among 21 imipenem resistant Acinetobacter baumannii ranged from $\geq 256 \, \mu \text{g/ml}$ to $8 \, \mu \text{g/ml}$.

Table 2: Distribution of Imipenem Resistant *Acinetobacter baumannii* Isolated From Different Samples (N=26)

Type of samples	Frequency	Percent	
Wound swab	2	7.7	
Urine	0	0.0	
Endotracheal aspirate	18	69.2	
Blood	1	3.8	
Total	21	80.8	

Among 21 imipenem resistant *Acinetobacter baumannii*, 16(76.2%) carbapenemase producers were detected by DDS test, 18(85.7%) by CD assay, 5(23.8%) by MHT and 20(95.2%) carbapenemase producers were detected by PCR (Table 3).

Table 3: Detection of Carbapenemase Producers Among Imipenem Resistant *Acinetobacter baumannii* by Phenotypic Methods and PCR (N=21)

Method	Positive	Negative
DDS test	16 (76.1%)	5 (23.8%)
CD assay	18 (85.7%)	3 (14.3%)
MHT	5 (23.8%)	16 (76.2%)
PCR	20 (95.2%)	1 (4.8%)

Out of 21 imipenem resistant strains, 18(85.7%) were positive for $bla_{\text{NDM-1}}$, 14(66.7%) for bla_{VIM} , 8(38.1%) for bla_{IMP} and 5(23.8%) were positive for bla_{KPC} . Most of the genes were isolated from endotracheal aspirate (Table 4 and Figure I).

Table 4: Carbapenemase Encoding Genes Among Imipenem Resistant *Acinetobacter baumannii* by PCR Isolated from Different Samples (N=21)

Type of Samples	NDM-1	VIM	IMP	KPC
Wound swab (N=2)	2(9.5%)	1 (4.8%)	2 (9.5%)	0 (0.0%)
Urine (N=0)	0(0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Endotracheal aspirate (N=18)	15(71.4%)	13 (61.9%)	5 (23.8%)	5 (23.8%)
Blood (N=1)	1(4.8%)	0 (0.0%)	1 (4.8%)	0 (0.0%)
Total (N=21)	18(85.7%)	14 (66.7%)	8 (38.1%)	5 (23.8%)

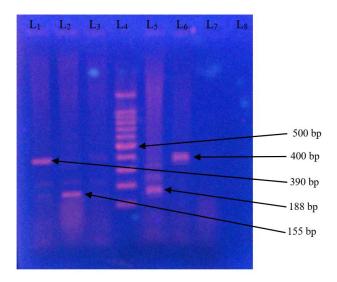


Figure I: Photograph of gel electrophoresis of amplified DNA of 390 bp for blaVIM gene (Lane 1), DNA of 155 bp for blaNDM-1 gene (Lane 2), Hundred bp DNA ladder (Lane 4), DNA of 188 bp for blaIMP gene (Lane 5), DNA of 400 bp for blaKPC gene (Lane 6). Negative control without DNA (Lane 3 and 7).

Discussion

During the last decades, Acinetobacter baumannii has emerged globally as an important nosocomial pathogen that gives rise to outbreaks of colonization and infection in critically ill, hospitalized patients²⁶.One of the main problems facing by hospitals, clinicians and health care personnel in regards to Acinetobacter baumannii is multidrug resistance. Continuous monitoring and rapid detection of this virulent organism may check their spread and play a vital role in infection control. To address this rising resistant determinant, this study has been observed the occurrence of carbapenemase encoding genes among imipenem-resistant Acinetobacter baumannii.

In this study, most (80.8%) of the *Acinetobacter baumannii* are resistant to imipenem. High resistance rate for *Acinetobacter baumannii* strains to imipenem has been reported by Joshi et al²⁷.

which is 29.0%. Another study in India has been showed 59.0% meropenem resistance among *Acinetobacter species* which reflect the evolving scenario in India²⁸. In a study, Lone et al²⁹ has been demonstrated that 98.5% of the *Acinetobacter*

baumannii are sensitive to imipenem. In Bangladesh, studies have been showed 88.0% and 92.1% of the *Acinetobacter* are imipenem resistant³⁰⁻³¹. Since last 10 years, acquired resistance to imipenem has been increasingly reported worldwide in non-fermenting gram-negative bacilli (NFGNB) including *Acinetobacter* species³². High antibiotic pressure due to indiscriminate use of carbapenems could have resulted in the increase in carbapenem resistant *Acinetobacter* isolates²⁸.

In the present study, among the 21-imipenem resistant *Acinetobacter baumannii*, 16(76.2%) carbapenemase producers are detected by DDS test, 18(85.7%) by CD assay and 5(23.8%) by MHT. In a previous study, 24.4% and 25.4% carbapenemase producers have been detected by DDS test and CD assay³³. Since evaluation of phenotypic methods have been described in several studies from the discovery of MBLs producers^{20-21,34}, no method gave satisfactory results to detect all the carbapenemase producers. So, from this point it can be concluded that PCR is the most reliable and acceptable method for early and accurate identification of carbapenemase producers.

In this study, 20 (95.2%) carbapenemase producers are detected by PCR out of 21 imipenem resistant *Acinetobacter baumannii*. A study in Bangladesh has been revealed 100.0% MBL producers among the imipenem resistant *Acinetobacter* species¹¹. The findings of the present study reveal that the prevalence of MBL producing *Acinetobacter* species is increasing in Bangladesh.

This study observes 18(85.7%) NDM-1 positive isolates detected by PCR among 21 imipenem resistant *Acinetobacter baumannii*. Previous studies in Bangladesh have been demonstrated 92.0% and

88.8% NDM-1 positive strain among the imipenem resistant Acinetobacter baumannii which are almost similar to the present study³⁰⁻³¹. A study by Kumarasamy et al³⁵ has been reported NDM-1 producing bacteria from India, Pakistan and the UK. NDM-1 producers have also been detected from Europe, Australia and the USA³⁶⁻³⁸. Interestingly, most of the cases from Europe, Australia and the USA have a history of recent travel or hospital admission in the Indian subcontinent. *bla*_{NDM-1} containing organisms are now alarmingly rising worldwide and pose therapeutic failure³⁵⁻³⁶. Another study in Bangladesh have been demonstrated 3.5% and 22.9% NDM-1 among the imipenem organisms^{11,13}. The present study have found high proportion of NDM-1 producers in Bangladesh than the previous study. The increasing percentage of this new resistance mechanism is due to healthcare associated acquisition of blaNDM-1 in hospitalized patient in different part of the world³⁶. Conversely, in India, NDM-1 producing organisms are mostly acquired from the community³⁵. It reflects that though most NDM-1 producers have been isolated from hospitalized patients, originally this resistance mechanism may have extended from community. Inappropriate and non-prescribed antibiotics use might be the probable cause of development of this new resistance mechanism in this subcontinent³⁹. MBL encoding genes have been detected from several gram-negative bacilli belonging to the family Enterobacteriaceae and also in Acinetobacter species⁴⁰. Acquired MBLs in gram-negative bacteria are becoming an emerging resistant determinant worldwide⁴¹.

This study also observed 14 (66.7%) VIM positive isolates detected by PCR among 21 imipenem resistant *Acinetobacter baumannii*. Khatun et al³⁰ have been reported 72.0% VIM producers among the imipenem resistant Acinetobacter baumannii. Findings of the present study is almost similar to the previous study.

Current study has found 8 (38.1%) IMP positive isolates detected by PCR among 21 imipenem resistant Acinetobacter baumannii. A study in Bangladesh has been reported 40.0% producers among the imipenem resistant Acinetobacter baumannii which support the present study 40 .

In present study, 5(23.8%) of imipenem resistant Acinetobacter baumannii are KPC positive and all of them are isolated from ETA. Mostofa et al⁴⁰ have been reported that from a total of 20 imipenem resistant Acinetobacter baumannii isolates, 6 (30%)

are identified as KPC positive. The presence of this gene suggests the possibility of transmission, as this carbapenemase has been associated with mobile genetic elements (transposons) which can be transferred from one bacterium to another⁴²⁻⁴³.

Conclusions

In this study blaNDM-1, blaKPC, blaVIM and blaIMP were predominant carbapenemase encoding genes among imipenem resistant Acinetobacter baumannii. This study reflects that blaNDM-1 positive Acinetobacter baumannii are increasing in Bangladesh. Early detection of this resistance mechanism, implementation of strict microbial policies and infection control programs may prevent the rapid dissemination of this organism.

Acknowledgements

None

Conflict of Interest

Authors declared no conflict of interest.

Financial Disclosure

This research project was not funded by any organization.

Authors' contributions

Sultana S conceived and designed the study, analyzed the data, interpreted the results, and wrote up the draft manuscript. Begum, Rahman T and Mostofa HA contributed to the analysis of the data, interpretation of the results and critically reviewing the manuscript. Jahan T, Yusuf MA and Asifudduza M involved in the manuscript review and editing. All authors read and approved the final manuscript.

Data Availability

Any inquiries regarding supporting data availability of this study should be directed to the corresponding author and are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate

Ethical approval for the study was obtained from the Institutional Review Board. As this was a prospective study the written informed consent was obtained from all study participants. All methods were performed in accordance with the relevant guidelines and regulations.

Copyright: © Sultana et al. 2025. Published by Bangladesh Journal of Infectious Diseases. This is an open-access article and is licensed under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this please https://www.creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Sultana S, Yusuf MA, Begum M, Rahman T, Jahan T, Asifudduza M, Mostofa HA. Status of Carbapenemase Encoding Genes among Imipenem Resistant Acinetobacter baumannii Isolated from Different Samples at a Tertiary Care Hospital in Bangladesh. Bangladesh J Infect Dis 2025;12(1):27-33

ORCID

Sharmeen Sultana: https://orcid.org/0000-0002-0503-0693
Md. Abdullah Yusuf: https://orcid.org/0000-0002-8551-7185
Momtaz Begum: https://orcid.org/0009-0003-0070-3080
Tania Rahman: https://orcid.org/0000-0002-0087-7916
Tarana Jahan: https://orcid.org/0000-0002-9405-6990
Md. Asifudduza: https://orcid.org/0009-0003-5740-7987
Hasbi Ara Mostofa: https://orcid.org/0000-0001-6429-1626

Article Info

Received on: 1 March 2025 Accepted on: 20 April 2025 Published on: 1 June 2025

References

- 1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clinical Microbiology Reviews. 2008;21(3):538-82.
- 2. Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). Journal of Antimicrobial Chemotherapy. 2011;66(9):2070-4.
- 3. Kuo HY, Chang KC, Kuo JW, Yueha, Liouf ML. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2012;39:33-8
- 4. Breijyeh Z, Jubeh B, Karaman R. Resistance of gramnegative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340.
- 5. Shugart A, Mahon G, Huang JY, Karlsson M, Valley A, Lasure M, et al. Carbapenemase production among less-common Enterobacterales genera: 10 US sites, 2018. JAC-Antimicrobial Resistance. 2021;3(3):dlab137.
- 6. World Health Organization. WHO global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. [Updated 2017; 2021 Aug 16]
- 7. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends in microbiology. 2011;19(12):588-95.
- 8. Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired carbapenemases in Gramnegative bacterial pathogens: detection and surveillance issues. Clinical microbiology and infection. 2010;16(2):112-22.
- 9. Prevention and Containment of Antimicrobial resistance. Available: [http://www.ino.searo.who.int/LinkFiles/Other_Content_WHD11-Seminar_PresentationWRpdf] Accessed on 11 April 2015.
- 10. Hasan B, Drobni P, Drobni M, Alam M, Olsen B. Dissemination of NDM-1. Lancet Infectious Diseases. 2012;12(2):99-100
- 11. Farzana R, Shamsuzzaman SM, Mamun KZ. Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. The Journal of Infection in Developing Countries. 2013;7(03):161-8.
- 12. Farzana R, Shamsuzzaman SM, Mamun KZ, Shears P. Antimicrobial Susceptibility Pattern of Extended Spectrum (Beta-Lactamase Producing Gram-Negative Bacteria Isolated from Wound and Urine in a Tertiary Care Hospital, Dhaka City, Bangladesh. Southeast Asian Journal of Tropical Medicine & Public Health. 2013;44(1):96-103.
- 13. Islam MA, Talukdar PK, Hoque A, Huq M, Nabi A, Ahmed D, et al. Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh. European

- journal of clinical microbiology & infectious diseases. 2012;31:2593-600.
- 14. Mansur FJ, Barai L, Karim MM, Haq JA, Fatema K, Faruq MO. Intravascular catheter related infections and antimicrobial susceptibility pattern of isolated bacteria in a tertiary care hospital of Bangladesh. Indian journal of medical microbiology. 2014;32(1):68-71.
- 15. Collee JG, Marr W. Specimen collection, culture containers and media. Mackie & McCartney Practical Medical Microbiology. 1996;2:85-111.
- 16. Cheesbrough M. Microbiological test. In: Cheesbrough M, (editor). District laboratory practice in tropical countries, Cambridge University press, UK 2000:pp.178-195.
- 17. Constantiniu S, Romaniue A, Lancu LS, Filimon R, Tarasi I. Cultural and biochemical characteristics of Acinetobacter spp. strains isolated from hospital units. Journal of Preventive Medicine 2004;12(3-4):35-42.
- 18. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45(4 ts):493-6.
- 19. Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty-fifth Informational Supplement. CLSI document M100-S25. Wayne, PA: CLSI; 2015.
- 20. Kim SY, Hong SG, Moland ES, Thomson KS. Convenient test using a combination of chelating agents for detection of metallo- β -lactamases in the clinical laboratory. Journal of clinical microbiology. 2007;45(9):2798-801.
- 21. Qu TT, Zhang JL, Wang J, Tao J, Yu YS, Chen YG, Zhou JY, Li LJ. Evaluation of phenotypic tests for detection of Metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. Journal of clinical microbiology. 2009;47(4):1136-42.
- 22. Manchanda V, Singh NP. Occurrence and detection of AmpC β -lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. Journal of Antimicrobial Chemotherapy. 2003;51(2):415-8.
- 23. Robledo IE, Aquino EE, Santé MI, Santana JL, Otero DM, León CF, Vázquez GJ. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrobial agents and chemotherapy. 2010;54(3):1354-7.
- 24. Mesli E, Berrazeg M, Drissi M, Bekkhoucha SN, Rolain JM. Prevalence of carbapenemase-encoding genes including New Delhi metallo-β-lactamase in Acinetobacter species, Algeria. International Journal of Infectious Diseases. 2013;17(9):e739-43.
- 25. Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2009;53(12):5035-8.
- 26. Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D β -lactamase in Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2009;53(12):5035-8.
- 27. Joshi SG, Litake GM, Niphadkar KB, Ghole VS. Multidrug resistant *Acinetobacter baumannii* isolates from a teaching hospital. Journal of infection and chemotherapy. 2003:9:187-90.
- 28. Noyal MJ, Menezes GA, Harish BN, Sujatha S, Parija SC. Simple screening tests for detection of carbapenemases in clinical isolates of non-fermentative Gram-negative bacteria. Indian Journal of Medical Research. 2009;129(6):707-12.
- 29. Lone R, Shah A, Kadri SM, Lone S, Faisal S. Nosocomial Multidrug-resistant Acinetobacter infections-Clinical Findings, Risk Factors and Demographic Characteristics. Bangladesh Journal of Medical Microbiology, 2009; 03 (01): 34-38.
- 30. Khatun MN, Farzana R, Lopes BS, Shamsuzzaman SM. Molecular characterization and resistance profile of nosocomial

- Acinetobacter baumannii in intensive care unit of tertiary care hospital in Bangladesh. Bangladesh Medical Research Council Bulletin. 2016;41(2):101-7.
- 31. Akter S, Shamsuzzaman SM. Distribution of New Delhi metallo-beta-lactamase producing Acinetobacter baumannii in patients with ventilator associated respiratory tract infection. IMC Journal of Medical Science. 2018;12(1):37-41.
- 32. Gupta V, Datta P, Chander J. Prevalance of metallo-betalactamase (MBL) producing Pseudomonas spp. and Acinetobacter spp. in a tertiary care hospital in India. Journal of Infection, 2006; 52:311-314.
- 33. Chowdhury RA, Sharmin S, Hena A, Saiful M, Chowdhury K, Akter N. Comparison of combined disc synergy test and double disc synergy test for phenotypic detection of metallo-β-lactamase among the clinical isolates of gramnegative bacilli. International Journal of Research in Medical Sciences. 2022;10(7):1402.
- 34. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. Journal of clinical microbiology. 2002;40(10):3798-801.
- 35. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet infectious diseases. 2010;10(9):597-602
- 36. Struelens MJ, Monnet DL, Magiorakos AP, O'Connor FS, Giesecke J. New Delhi metallo-beta-lactamase 1–

- producing Enterobacteriaceae: emergence and response in Europe. Eurosurveillance. 2010;15(46):19716.
- 37. Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrobial agents and chemotherapy. 2010;54(11):4914-6.
- 38. Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerging infectious diseases. 2011;17(1):103.
- 39. Mamun KZ, Tabassum S, Shears P, Hart CA. A survey of antimicrobial prescribing and dispensing practices in rural Bangladesh. Mymensingh Medical Journal, 2006; 15 (1): 81-4.
- 40. Mostofa HA, Shamsuzzaman SM, Hasan MM, Sultana S, Afroz S, Shormin M, Sultana SS. Detection of Carbapenemase Genes by Molecular Method among Gram-Negative Bacilli Isolates from Tertiary Care Hospital in Dhaka, Bangladesh. Journal of Shaheed Suhrawardy Medical College. 2022;14(1):3-7.
- 41. Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochemical pharmacology. 2007;74(12):1686-701
- 42. Gootz TD, Marra A. *Acinetobacter baumannii*: an emerging multidrug-resistant threat. Expert review of anti-infective therapy. 2008;6(3):309-25.
- 43. Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β -lactamase *bla*KPC gene. Antimicrobial Agents and Chemotherapy. 2008;52(4):1257-63.