OPEN ACCESS Freely available online

http://www.banglajol.info/index.php/BJID/index

Original Article

Bangladesh Journal of Infectious Diseases

June 2025, Volume 12, Number 1, Page 78-84

ISSN (Online) 2411-670X ISSN (Print) 2411-4820 NLM ID: 101761093

DOI: https://doi.org/10.3329/bjid.v12i1.83685

Adverse Events Following Immunization with EPI Vaccines among the Children of an Upazilla Health Complex in Bangladesh

Mohammad Nurunnabi¹, Tanmoy Das Tanu², Farzana Akter³, Tawfima Islam⁴, Md. Hafiz Ehsanul Hoque⁵, Md. Shibbir Ahmed⁶

¹Assistant Professor, Department of Community Medicine and Public Health, Sylhet Women's Medical College, Sylhet, Bangladesh; ²MPH Fellow, Department of Public Health, SOMC Centre, Bangladesh Open University, Sylhet, Bangladesh; ³MPH Fellow, Department of Public Health, Sylhet MAG Osmani Medical College Centre, Bangladesh Open University, Sylhet, Bangladesh; ⁴Assistant Professor, Department of Community Medicine and Public Health, Sylhet MAG Osmani Medical College, Sylhet, Bangladesh; ⁵Associate Professor, Department of Community Medicine and Public Health, Sylhet MAG Osmani Medical College, Sylhet, Bangladesh; ⁶Professor, Department of Community Medicine and Public Health, Sylhet MAG Osmani Medical College, Sylhet, Bangladesh.

Abstract

Background: In Bangladesh, the Expanded Programme on Immunization (EPI) is the most successful and cost-effective public health initiative, significantly reducing morbidity and mortality in children under five, despite the inevitability of some adverse events following immunization (AEFI). Objective: The purpose of the present study was to evaluate the AEFI of EPI vaccines among the children of an Upazilla Health Complex. Methodology: This hospital-based cross-sectional study was conducted among 178 conveniently selected parents of children aged ≤18 months who received EPI vaccines within the past 3 months at the EPI corner of Nabiganj Upazila Health Complex, Habiganj, Bangladesh. From July to December 2023, a pretested face-to-face, semi-structured questionnaire was used to interview study participants at their convenience. The questionnaire was generated by the socio-demographic profile of children, the children's birth history profiles, and The AEFI status of children's EPI vaccinations during the study period. Results: The EPI vaccine had been given to all children, and all of them had suffered known adverse effects. After following vaccination, 61.2% of vaccine recipients experienced adverse effects from the BCG vaccine, 38.8% from Pentavalent, 20.8% from IPV, 5.6% from PCV, 2.8% from MR, 1.7 from OPV, and 0.6% from the measles vaccine. Fever (97.8%) and injection site abscess (16.9%) were the most frequent adverse effects. In 97.2% of instances, adverse effects occurred within 24 hours, and 89.3% of instances had adverse effects that persisted <7 days. Only 1.7% of the children' parents informed the EPI center about adverse effects. After getting treatment, 99.4% of them recovered, while 0.6% persisted. Among all stated AEFI cases, no one was hospitalized or died. Conclusion: In order to mitigate morbidities, health education and promotion initiatives should be put into place to raise parents' comprehension regarding AEFI. [Bangladesh Journal of Infectious Diseases, June 2025; 12(1):78-84]

Keywords: AEFI; EPI vaccination; Bangladesh

Correspondence: Dr. Mohammad Nurunnabi, Assistant Professor, Department of Community Medicine and Public Health, Sylhet Women's Medical College, Sylhet 3100, Bangladesh; Email: nur.somch@gmail.com; Mobile: +880 1717870559; ORCID: https://orcid.org/0000-0001-9472-9369

©Authors 2025. CC-BY-NC

Introduction

Immunization aims to protect individuals and communities against vaccine-preventable diseases. Although vaccines used in national immunization campaigns are extremely safe and effective, there is always a risk of adverse events following immunization (AEFI). The act of immunization, not only the vaccines, can lead to adverse events¹.

The Expanded Programme on Immunization (EPI) is one of Bangladesh's most successful programmes. In Bangladesh, a fully immunized child receives 8 immunizations covering the 6 standard EPI antigens. However, completing the whole vaccine schedule remains a significant programmatic issue. Recent national studies show that 82.0 to 89.0% of children below 24 months are fully vaccinated^{2,3}. Although 98.0% of children received BCG or DPT₁ vaccines, measles coverage was 89% only³.

Another study in Dhaka district found 13% dropouts for DPT1 to measles⁴. Almost all parents bring their children for the first of three series of DPT and OPV, but many do not complete the measles vaccination, resulting in incomplete protection. Studies have shown that children who do not receive measles vaccination are more likely to be stunted, underweight, and wasted compared to fully immunized groups⁵.

AEFI refers to any adverse medical event that occurs after immunization but is not directly related to vaccination use⁶. AEFIs can cause minor to lifethreatening side effects in children, but they are rare. Adverse events can be induced by immunizations, administration errors, or no known cause⁷. The AEFIs can be categorized into 5 main types, vaccine product related reaction, vaccine quality defect-related reaction, immunization error-related reaction, coincidental event, and immunization anxiety-related reaction^{8,9}.

Improving vaccination safety is crucial as it might impact service utilization without proper monitoring and management. Vaccines have higher expectations than pharmaceuticals, and difficulties associated with them are less acceptable to the public. Effective monitoring and response to AEFIs is crucial¹⁰. UNICEF and WHO have improved developing nations' access to high-quality, inexpensive immunizations. UNICEF supplies EPI vaccinations from WHO-recommended suppliers. WHO pre-qualifies vaccinations and provides guidance to UN procurement agencies on their

quality, efficacy, and safety. Vaccines developed and monitored according to WHO standards are generally safe, although there is always a possibility of unpleasant reactions^{11,12}.

Early detection and treatment of AEFI is essential. These measures will increase public trust while also preventing further clustering of cases due to software errors. Quick response to AEFI is crucial. Bangladesh's government is strengthening the AEFI surveillance system by establishing committees at the national, state, and local levels.

Methodology

Study design and settings: This cross-sectional study was carried out to evaluate the adverse events following immunization of EPI vaccines among the children of EPI corner of an Upazilla Health Complex (UHC) named Nabiganj UHC situated in the Habiganj district, Sylhet 3370, Bangladesh.

Sample selection criteria: The study included 178 parents of children aged 18 months or younger, who had received the EPI vaccine within the 3 months prior to the interview.

Data collection procedures: From July to December 2023, a pretested face-to-face, semi-structured questionnaire was used to interview study participants at their convenience. The questionnaire was generated by the socio-demographic profile of children, the children's birth history profiles, and The AEFI status of children's EPI vaccinations during the study period.

Data analysis: Data was entered, curated and analyzed using IBM SPSS Version 26 (New York, USA). Descriptive statistics were expressed as frequency (percentage) and mean (±standard deviation, or SD) for categorical and continuous data, respectively. Chi-square test and Fisher exact test were used to assess the significance of associations between two nominal variables. A p-value of <0.05 at a 95% confidence interval (CI) was considered significant for all statistical tests.

Ethical Approval: Informed consent and permission to record interviews were obtained from all participants prior to the interviews. Participation was voluntary, and participants were informed of their right to withdraw at any time without consequence. Confidentiality was maintained throughout the study. The research complied with the 2013 revised Declaration of Helsinki and its amendments, or comparable ethical standards.

Ethical approval was granted by Sylhet MAG Osmani Medical College, Sylhet 3100, Bangladesh.

Results

Socio-demographic profile of the children: Table 1 depicts the socio-demographic profile of children. The child's age was 6.2±3.8 months on a mean. The age group of ≤ 6 months constituted the majority of the total (61.2%), followed by 10 to 15 months (25.6%) and 7 to 9 months (12.9%). Of the children, 52.2% were female, and the remaining 47.8% were male. Of the fathers, more than onethird (37.1%) had completed secondary education, 29.2% had finished primary education, and 11.2% had graduated, whereas only 8.4% were illiterate. Approximately 48.9% of mothers had completed their primary education, 5.6% had graduated, and only 1.7% were illiterate (Figure I). Most fathers (42.7%) were businessmen, with 19.1% living overseas, and only 7.3% worked as day laborers. The majority of the mothers (96.6%) were homemakers, with the others (3.4%) working in different occupations such as students, service holders, and businesswomen. The mean family income was 18,269.7±6,518.6 taka. Approximately 72.5% of parents had a monthly family income of ≤20,000 taka.

Table 1: Socio-Demographic Profile of the Children (n=178)

Attributes	Frequency	Percent		
Age Group				
≤6 months	109	61.2		
7 to 9 months	23	12.9		
10 to 15 months	46	25.8		
Mean±SD	6.2±3.8			
Gender				
Male	85	47.8		
Female	93	52.2		
Father's Occupation	n			
Agricultural	30	16.9		
worker	30			
Businessman	76	42.7		
Overseas	34	19.1		
Service holder	25	14.0		
Day laborer	13	7.3		
Mother's Occupati	Mother's Occupation			
Homemaker	172	96.6		
Others	6	3.4		
Family Incomes				
≤20,000 taka	129	72.5		
>20,000 taka	49	27.5		
Mean±SD	18,269.7±6,518.6			

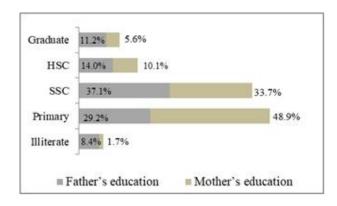


Figure I: Levels of education of the parents of children (n=180)

Birth History Profiles of the Children: Table 2 describes the children's birth history profiles. The mean current body weight was 6.1±2.2 kg. The majority of children (53.4%) weighed more than 5 kg, while the rest weighed less than 5 kg (46.6%). The mean birth weight was 2.9±0.3 kg at the 1st hour. The majority of the children's birth weight was ≥ 2.5 kg (97.8%), while the rest were ≤ 2.5 kg (2.2%). A full-term delivery occurred for a cent of the children. Normal vaginal deliveries accounted for 61.2% of deliveries, whereas caesarean sections accounted for 38.8%. 52.7% of the children (50.0) were born in private health settings (clinics, NGOs), 7.3% at home, and half of the children were born in government health facilities. Following birth, no complications faced by the respondent's child occurred.

Table 2: Birth History Profile of the Children (n=178)

Attributes	Frequency	Percent		
Current body weight				
≤5 Kg	83	46.6		
>5 Kg	95	53.4		
Mean±SD	6.1±	6.1±2.2		
Child birth weight	Child birth weight			
<2.5 Kg	4	2.2		
≥2.5 Kg	174	97.8		
Mean±SD	2.9±0.3			
Term of birth				
Pre-term (before 37	0	0.0		
week)				
Full term (between	178	100.0		
37-42 weeks)				
Post term (after 42	0	0.0		
weeks)				
Mode of last delivery				
Normal vaginal	109	61.2		
delivery (NVD)	109	01.2		
Caesarean section	69	38.8		

Attributes	Frequency	Percent		
(CS)				
Place of last delivery				
Home	13	7.3		
Government health	89	50.0		
settings				
Private health settings	76	42.7		
(NGO, Clinic etc.)				
Complication occurred after delivery				
Yes	0	0.0		
No	178	100.0		

AEFI Status of EPI Vaccination of Children:

The AEFI status of children's EPI vaccinations during the study period was shown in Table 3. The all respondents (100.0%) were aware of the EPI vaccine. The EPI vaccine had been given to all children, and all of them had experienced known adverse effects after receiving it. Within the last 3 months, 61.2% of the vaccine recipients suffered adverse effects from the BCG vaccine, 38.8% from Pentavalent, 20.8% from IPV, 5.6% from PCV, 2.8% from MR, 1.7 from OPV, and 0.6% from the measles vaccine (Figure II). The majority of respondents figured that fever (97.8%), injection site abscess (16.9%), and persistent inconsolable screaming (2.2%) were the most common adverse effects. Within 24 hours, adverse effects were observed in 97.2% of instances. For children, adverse effects last less than 7 days (89.3%), more than 7 days (1.7%), and till present (0.6%). Out of all the parents of the recipients, only 1.7% of them informed the EPI center about adverse effects within 3 months of receiving the vaccines, while 98.3% did not. The most cited reasons were that the child's illness was not critical (65.1%), treated at home (14.9%), and managed by a local doctor (21.1%), and the reporting procedure was imprecise (1.7%). Not a single child needed to be admitted to the hospital to manage the adverse effects. 99.4% of patients recovered after getting treatment, while 0.6% persisted. Due to a vaccine's adverse effects, nobody has died (Figure III).

Table 3: AEFI Status of EPI Vaccination of Children (n=178)

Attributes	n(%)	
Parents aware about EPI vaccination		
Yes	178(100.0)	
No	0(0.0)	
Total	178(100.0)	
History of taking EPI vaccine		
Yes	178(100.0)	
No	0(0.0)	
Total	178(100.0)	

Attributes	n(%)			
History of adverse effects within the last 3				
months following vaccination				
Yes	178(100)			
No	0(0.0)			
Total	178(100.0)			
Adverse effects occurred follo	wing			
vaccination				
Fever	174(97.8)			
Local reactions (Pain, redness	153(86.0)			
& swelling)				
Injection site abscess	30(16.9)			
Persistent inconsolable	4(2.2)			
screaming				
*Multiple responses				
Time of onset of adverse effec	ts			
Within 24 hours	173(97.2)			
Within 72 hours	5(2.8)			
Duration of the adverse effect	s persist			
Less than 24 hours	15(8.4)			
Less than 7 days	159(89.3)			
Less than 1 month	3(1.7)			
Till persist	1(0.6)			
Reported about adverse effect	ts to EPI center			
Yes	3(1.7)			
No	175(98.3)			
Reasons for not informing the	EPI center			
about adverse effects (n=175)				
Condition was not serious	114(65.1)			
Treated at home	26(14.9)			
Treated by local doctor	37(21.1)			
Long distance of EPI center	5(2.8)			
Process of reporting is	3(1.7)			
unknown				
	Multiple responses			
Required hospitalization for management				
Yes	0(0.0)			
No	178(100.0)			

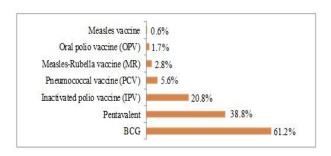


Figure II: Probable vaccine caused adverse effects

Table 4 unveils an interpretation of the association between multiple variables and the reported adverse effects to the EPI Centre. No statistically significant association was found.

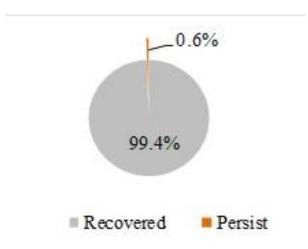


Figure III: Outcomes of AEFI (n=178)

Table 4: Association of Reported AEFI to EPI Center with Different Variables

	Reported on AEFI		P	
Attributes	Yes	No	value	
Father's education				
Illiterate	0(0.0%)	15(100.0%)	†0.666	
Below HSC	3(2.5%)	115(97.5%)		
HSC & above	0(0.0%)	45(100.0%)		
Mother's educa	Mother's education			
Illiterate	0(0.0%)	3(100.0%)	†0.437	
Below HSC	2(1.4%)	145(98.6%)		
HSC & above	1(3.6%)	27(96.4%)		
Family incomes				
≤20,000 taka	1(0.8%)	128(99.2%)	0.184	
>20,000 taka	2(4.1%)	47(95.9%)		
Adverse effects persist				
<24 hours	0(0.0%)	15(100.0%)	†1.000	
<7 days	3(1.9%)	156(98.1%)		
<1 month	0(0.0%)	3(100.0%)		
Till persist	0(0.0%)	1(100.0%)		

Chi-square and †Fisher exact test done, p<0.05 considered as statistically significant value

Discussion

Since the beginning in 1974 and its introduction to Bangladesh in 1979, the WHO EPI program has been one of the most influential global health initiatives. In 1985, the WHO established a standardized vaccination schedule for the original EPI vaccines^{13,14}. In this year, the Government of the People's Republic of Bangladesh committed to the Global Universal Child Immunization Initiative (UCI)^{14,15}, and began a phase-wise process of EPI intensification from 1985-1990.

The child's age was 6.2 ± 3.8 months on a mean. The age group of ≤ 6 months constituted the majority of

the total (61.2%), followed by 10-15 months (25.6%) and 7-9 months (12.9%). Of the children, 52.2% were female, and the remaining 47.8% were male. Of the fathers, more than one-third (37.1%) had completed secondary education, 29.2% had finished primary education, and 11.2% had graduated, whereas only 8.4% were illiterate. Approximately 48.9% of mothers had completed their primary education, 5.6% had graduated, and only 1.7% was illiterate. Most fathers (42.7%) were businessmen, with 19.1% living overseas, and only 7.3% worked as day laborers. The majority of the mothers (96.6%) were homemakers, with the others (3.4%) working in different occupations (such as students, service holders, and businesswomen). The mean family income was 18,269.7±6,518.6 taka. Approximately 72.5% of parents had a monthly family income of ≤20,000 taka. These finding were nearly similar to the studies^{16,17}.

Regarding the children's birth history profiles, the mean current body weight was 6.1±2.2 kg. The majority of children (53.4%) weighed more than 5 kg, while the rest weighed less than 5 kg (46.6%). The mean birth weight was 2.9±0.3 kg at the 1st hour. The majority of the children's birth weight was ≥ 2.5 kg (97.8%), while the rest were ≤ 2.5 kg (2.2%). A full-term delivery occurred for a cent of the children. Normal vaginal deliveries accounted for 61.2% of deliveries, whereas caesarean sections accounted for 38.8%. 52.7% of the children (50.0) were born in private health settings (clinics, NGOs), 7.3% at home, and half of the children were born in government health facilities. Following birth, no complications faced by the respondent's child occurred. These findings were almost similar to the studies^{17,18}.

The EPI vaccine had been given to all children, and all of them had experienced known adverse effects after receiving it. Within the last 3 months, 61.2% of the vaccine recipients suffered adverse effects from the BCG vaccine, 38.8% from Pentavalent, 20.8% from IPV, 5.6% from PCV, 2.8% from MR, 1.7 from OPV, and 0.6% from the measles vaccine. The majority of respondents figured that fever (97.8%), injection site abscess (16.9%), and persistent inconsolable screaming (2.2%) were the most common adverse effects. Within 24 hours, adverse effects were observed in 97.2% of instances. For children, adverse effects last less than 7 days (89.3%), more than 7 days (1.7%), and till present (0.6%). Out of all the parents of the recipients, only 1.7% of them informed the EPI center about adverse effects within 3 months of receiving the vaccines, while 98.3% did not. The most cited reasons were that the child's illness was

not critical (65.1%), treated at home (14.9%), and managed by a local doctor (21.1%), and the reporting procedure was imprecise (1.7%). Not a single child needed to be admitted to the hospital to manage the adverse effects. 99.4% of patients recovered after getting treatment, while 0.6% persisted. These findings were nearly similar to the studies in India^{12,19} and in Nigeria^{20,21}.

The data in this study are limited to a specific region and do not represent the entire country. Due to time constraints, we were unable to assess the entire target population, resulting in a smaller sample size than initially estimated.

Conclusion

The side effects reported most frequently were local reactions (pain, redness, and swelling), fever, and injection site abscess, with the majority occurring within 24 hours following immunization. Most of the adverse effects were reported after receiving BCG, IPV, and Pentavalent vaccinations. Within 7 days, the majority of recipients recovered from the vaccine's adverse effects, and no one died as a result of events. The AEFI reporting system needs to be more user-friendly and accessible to the general public. Policymakers and stakeholders must implement more community-based strategies to enhance awareness.

Acknowledgements

We acknowledge the health authorities for giving us permission to collect from the health facility. We are also thankful of the parents' participation in the study.

Conflict of Interest

The authors declare that they have no competing interests.

Financial Disclosure

This study did not receive any funding.

Authors' contributions

Conceptualization, methods and literature reviews: Nurunnabi M, and Tanu TD; Data collection: Tanu TD; Statistical analysis: Nurunnabi M, and Akter F; Draft manuscript: Nurunnabi M, Tanu TD, Akter F and Ahmed MS. All the authors work and approved the final manuscript.

Data Availability

Any questions regarding the availability of the study's supporting data should be addressed to the corresponding author, who can provide it upon justifiable request.

Ethics Approval and Consent to Participate

The Institutional Review Board granted the study ethical approval. Since this was a prospective study, every study participant provided formal informed consent. Each method followed the appropriate rules and regulations.

Copyright: © Nurunnabi et al. 2025. Published by *Bangladesh Journal of Infectious Diseases*. This is an open-access article and is licensed under the Creative Commons Attribution Non-

Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this license, please see: https://www.creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Nurunnabi M, Tanu TD, Akter F, Islam T, Hoque MHE, Ahmed MS. Adverse Events Following Immunization with EPI Vaccines among the Children of an Upazilla Health Complex in Bangladesh. Bangladesh J Infect Dis 2025;12(1):78-84

ORCID

Mohammad Nurunnabi: https://orcid.org/0000-0001-9472-9369
Tanmoy Das Tanu: https://orcid.org/0009-0009-1134-9367
Farzana Akter: https://orcid.org/0009-0006-0537-6607
Tawfima Islam: https://orcid.org/0009-0002-7194-321X

Md. Hafiz Ehsanul Hoque:

https://orcid.org/0009-0009-2807-1066

Md. Shibbir Ahmed: https://orcid.org/0009-0004-2270-5367

Article Info

Received on: 1 March 2025 Accepted on: 20 April 2025 Published on: 1 June 2025

References

- 1. Immunization safety surveillance: guidelines for immunization programme managers on surveillance of adverse events following immunization. [Internet]. World Health Organization (WHO): 2016. Available from: https://fctc.who.int/publications/i/item/9789290617457. (Cited on November 12, 2023)
- 2. National Institute of Population Research and Training (NIPORT), Mitra and Associates, MEASURE DHS, Macro International. [Internet]. Bangladesh Demographic and Health Survey 2007. Available from: https://dhsprogram.com/publications/publication-fr207-dhs-final-reports.cfm (Cited on November 12, 2023)
- 3. Expanded Program on Immunization (EPI) Guidelines 2012. Directorate General of Health Services. Available from: https://old.dghs.gov.bd/images/docs/EPI/EPI_Bangla%20Final2012.pdf (Cited on November 12, 2023)
- 4. Khan MN, Rahman ML, Islam MS, Musa SA, Tofail F. Vaccination coverage survey in Dhaka District. Bangladesh Medical Research Council Bulletin. 2005;31(2):46-53.
- 5. Chowdhury F, Khan AI, Hossain MI, Malek MA, Faruque AG, Ahmed T, Salam MA. Young children non-immunized against measles: Characteristics and programmatic implications. Acta Paediatrica. 2006;95(1):44-9.
- 6. Twene P, Yawson AE. Adverse events following immunization (AEFI) reporting in a rural district in Ghana. Postgraduate Medical Journal of Ghana. 2018;7(2):105-14.
- 7. De Figueiredo A, Johnston IG, Smith DM, Agarwal S, Larson HJ, Jones NS. Forecasted trends in vaccination coverage and correlations with socioeconomic factors: a global time-series analysis over 30 years. The Lancet Global Health. 2016;4(10):e726-35.
- 8. Wodi AP, Hamborsky J, Morelli V, Schillie S. Epidemiology and prevention of vaccine-preventable diseases. Hall E, editor. US Department of Health and Human Services, Centers for Disease Control and Prevention; 2021.
- 9. Global status of immunization safety: report based on the WHO/UNICEF Joint Reporting Form, 2004 update. [Internet]. WHO: 2005. Available from:

- https://openwho.org/courses/vaccine-safety-basics (Cited on November 15, 2023)
- 10. Causality assessment of an adverse event following immunization (AEFI). User manual for the revised WHO AEFI causality assessment classification. 2013;56. [Internet]. WHO: 2013. Available from: https://www.who.int/publications-detail-redirect/9789241516990 (Cited on November 15, 2023)
- 11. World Health Organization, 2019. MODULE 3 Classification of AEFIs-WHO Vaccine Safety Basics. [Internet]. Available from: https://www.who.int/publications-detail-redirect/module-3-immunization-safety (Cited on November 15, 2023)
- 12. Pagar VS, Chavan SS, Patil SP, Borde A, Kinge AD, Khargekar N. Epidemiological study of adverse events following immunization in under 5 year children. Journal of Family Medicine and Primary Care. 2021;10(7):2482.
- 13. Comprehensive Multi-Year Plan of the National Immunization Program of Bangladesh 2011-2016. [Internet]. WHO: 2017. Available from: https://extranet.who.int/countryplanningcycles/sites/default/files/planningcycle repository/bangladesh/bangladesh cmyp doc.pdf (Cited on November 18, 2023)
- 14. Sarkar PK, Sarker NK, Doulah S, Bari TI. Expanded programme on immunization in Bangladesh: a success story. Bangladesh Journal of Child Health. 2015;39(2):93-8.
- 15. Adam VY, Onowugbeda ED, Osuji OI, Omohwovo OD. Prevalence and management of perceived adverse events following immunization in infants attending well baby clinics in Benin city, Nigeria. Journal of Community Medicine and Primary Health Care. 2020;32(2):57-67

- 16. Adubi KO, Oyundoyin BM, Ariyo AM, Adekunbi RA, Lasode AO. Nursing mothers: Adverse events following immunization and its implication for counselling. International Research Journal of Science, Technology, Education, & Management. 2023;3(1).
- 17. Anyanwu CO, Agunwah L, Ibekwe AM, Okafor CJ, Adike CN, Chijioke UO, Vincent CC, Obeagu EI, Onwasigwe CN, Agu CC. Knowledge and Practice of Childhood Immunization among Men with Infants in Enugu Metropolis. Journal of Pharmaceutical Research International. 2021;33(39B):5-15.
- 18. Pukh R. Knowledge of mothers and caretakers on adverse events following immunization in an urban community of Imphal. Journal of Medical Society. 2020;34(3):121.
- 19. Joshi J, Das MK, Polpakara D, Aneja S, Agarwal M, Arora NK. Vaccine safety and surveillance for adverse events following immunization (AEFI) in India. The Indian Journal of Pediatrics. 2018;85:139-48.
- 20. Mba IC, Aniwada EC. Parents and caregivers' perceptions on content and channels of communication on immunization service messages in Anambra state, Nigeria implication for action. International Journal of Research in Medical Sciences. 2023;11(9):3218.
- 21. Omoleke SA, Getachew B, Isyaku A, Aliyu AB, Mustapha AM, Dansanda SM, Kanmodi KK, Abubakar H, Lawal ZI, Kangiwa HA. Understanding and experience of adverse event following immunization (AEFI) and its consequences among healthcare providers in Kebbi State, Nigeria: a qualitative study. BMC Health Services Research. 2022;22(1):741.