Review Article

Bangladesh Journal of Infectious Diseases

June 2025, Volume 12, Number 1, Page 159-166

ISSN (Online) 2411-670X ISSN (Print) 2411-4820 NLM ID: 101761093

DOI: https://doi.org/10.3329/bjid.v12i1.81504

Epidemiological Insights and Current Perspectives of Leprosy in Sri Lanka: A Narrative Review

Ishani Aluthgamage¹, Maheshi Thilakarathna², Sakuni Sathsarani³, Gayathri Pabodha⁴, Nivedha Uthayarajan⁵, Jananie Kottahachchi⁶, Indira Kahawita⁷, Bhagya Deepachandi⁸

¹Undergraduate, Department of Life Sciences, Faculty of Science, NSBM Green University, Homagama, Sri Lanka; ²Research Assistant, Department of Life Sciences, Faculty of Science, NSBM Green University, Homagama, Sri Lanka & Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; ³Undergraduate, Department of Life Sciences, Faculty of Science, NSBM Green University, Homagama, Sri Lanka; ⁴Undergraduate, Department of Life Sciences, Faculty of Science, NSBM Green University, Homagama, Sri Lanka; ⁵Lecturer (Probationary), Department of Life Sciences, Faculty of Science, NSBM Green University, Homagama, Sri Lanka; ⁶Professor in Microbiology, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; ⁷Consultant Dermatologist, The National Hospital of Sri Lanka, Colombo, Sri Lanka; ⁸Senior Lecturer, Department of Life Sciences, NSBM Green University, Homagama, Sri Lanka

Abstract

Sri Lanka eliminated leprosy as a public health problem in 1995. From 2001 onward, the caseload remained stable followed by a gradual decline between 2014 and 2019. Except for the COVID-19 pandemic years, approximately 2,000 new cases have been consistently reported each year. This review examines Sri Lanka's historical leprosy control strategies, including social marketing campaigns and the integration of leprosy care into the general healthcare system, which contributed to the elimination of the disease. It also highlights the support provided by the WHO and the country's renewed commitment to ongoing control efforts. Despite significant progress, Sri Lanka continues to face challenges in leprosy control, including a rise in child cases and potential drug resistance, revealing gaps in surveillance and control efforts. The current leprosy situation is affected by delayed diagnoses, incomplete treatments, and disruptions from the COVID-19 pandemic, emphasizing the importance of resilient healthcare systems and targeted interventions. Looking forward, priorities include early detection, treatment adherence, addressing socio-economic factors, and investigating environmental and genetic contributors to transmission. Achieving the goal of zero leprosy in Sri Lanka by 2030, which is a realistic and attainable goal, will require reliable diagnostics, vaccine development, sustained public awareness, and ongoing innovation, vigilance, and collaboration. [Bangladesh Journal of Infectious Diseases, June 2025;12(1):159-166

Keywords: Anti-leprosy campaign; elimination; epidemiology; leprosy; socio-economic factors; Sri Lanka

Correspondence: Bhagya Deepachandi, Senior Lecturer, Department of Life Sciences, Faculty of Science, NSBM Green University, Sri Lanka & Ishani Aluthgamage and Maheshi Thilakarathna contributed equally to this work; Email: bhagya.d@nsbm.ac.lk; Cell No.: +94711613966; ORCID: https://orcid.org/0000-0001-7601-4845

©Authors 2025. CC-BY-NC

Introduction

Leprosy is a chronic infectious disease primarily caused by the bacterium *Mycobacterium leprae* which was traditionally considered the sole causative agent until the discovery of a new species *Mycobacterium lepromatosis* by Han et al¹. It primarily affects the skin and peripheral nerves leading to progressive neurological impairment and permanent disability, if left untreated². Sri Lanka is considered to be one of the 23 priority nations with the highest leprosy burden³. Sri Lanka, like many countries, has a long history with leprosy and its epidemiological trends provide valuable insights for global control efforts. Once considered highly endemic, Sri Lanka has made significant progress toward leprosy elimination⁴.

Through the World Health Organization (WHO) program providing free multidrug therapy (MDT) to endemic countries⁵, Sri Lanka successfully implemented MDT and achieved the organization's leprosy elimination target of less than one case per 10,000 population in 1995, contributing to the global decline in leprosy cases^{4,6}. However, the disease remains a significant public health concern due to the overall number of cases continuing to decline at a slow pace, with nearly 2,000 new cases reported annually⁷.

This review employs a descriptive approach to explore the historical epidemiology of leprosy in Sri Lanka. It aims to analyse current trends along with diagnostic methods, and treatment strategies, while also exploring the socio-economic factors and public attitudes that influence disease transmission and management. Additionally, this review highlights key knowledge gaps that warrant further research.

Historical overview of leprosy in Sri Lanka

Leprosy has a deep-rooted history in Sri Lanka where it was a significant public health concern during the colonial period. Due to the lack of effective treatment, the response was one of segregation^{4,8}. Patients were isolated in leprosaria established by colonial authorities to control the spread, operating under harsh conditions and contributing to the social marginalization of those affected⁹.

In the 19th century, medical advancements improved the understanding of leprosy, though treatments remained ineffective, and stigma persisted¹⁰. The mid-20th century saw a pivotal shift with the

establishment of the Anti-Leprosy Campaign (ALC), transitioning efforts from isolation to treatment and control⁵. Bacillus Calmette-Guérin (BCG) vaccination was introduced in 1949 and with newborn vaccinations starting in 1963⁴. The discovery of dapsone in the 1940s provided the first effective treatment,8 but drug resistance limited its long-term efficacy⁵. In 1982, the WHO introduced MDT, a curative and preventive treatment, which Sri Lanka adopted in 1983, becoming the first South Asian country to implement it for all registered patients^{4,11}. Social marketing campaigns in the late 1980s helped reduce stigma and promote early case detection 12-14. However, concerns remain about potential gaps in expertise among general healthcare providers in diagnosing and managing leprosy¹⁵ and the socio-cultural stigma deterring timely treatment^{11,16}.

In 1995, Sri Lanka achieved the WHO's leprosy elimination target³. By 2001, the country had made significant progress by integrating leprosy control activities into the general healthcare system, improving access to treatment⁸. In 2013, leprosy was designated a notifiable disease in Sri Lanka, requiring all cases to be reported to health authorities to strengthen monitoring, contact tracing, and reduce treatment defaults³.

Epidemiology of leprosy in Sri Lanka

Sri Lanka's efforts in leprosy elimination highlight a significant public health achievement. The discovery of dapsone led to the establishment of the ALC, which prioritized case detection, treatment, and public education^{8,17}. The introduction of MDT helped improve treatment outcomes, while the social marketing campaign successfully raised awareness and reduced leprosy-related stigma³.

By 1987, the leprosy prevalence in Sri Lanka had declined to 0.14 per 1,000 people, compared to 0.6 per 1,000 in 1986, with an active case incidence rate of 0.07 per 1,000¹⁸. By 2012, the prevalence was 0.07 per 1,000¹⁹, demonstrating no increase in cases since 1987⁴. Similarly, the prevalence of leprosy in Sri Lanka has decreased over the years, reflecting the effectiveness of interventions aimed at reducing the burden of leprosy within the population.

Leprosy incidence in Sri Lanka has shown a declining trend in recent years²⁰. Data from the ALC database⁴ (1960–2020) highlight fluctuations in both the number of newly detected cases and the new case detection rate (NCDR), which measures

annual new cases per 100,000 people (Figure I)⁴. However, the COVID-19 pandemic significantly impacted case reporting. In 2019, 1,658 new cases were identified but this number dropped to 1,212 in 2020²¹. The sharp decline in both case numbers and the NCDR during 2020 and 2021 reflects disruptions in case-finding efforts, a challenge experienced worldwide, including in Sri Lanka⁴.

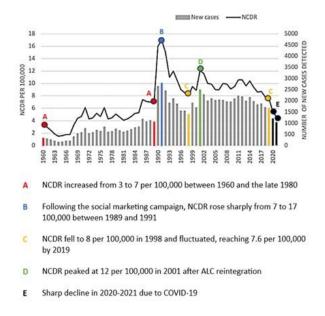


Figure I: Newly detected cases and the new case detection rate (NCDR) per 100,000 population (1960 - 2021)⁴

In partnership with WHO, Sri Lanka's Health Ministry has implemented strategies such as active case detection through contact examination and house-to-house surveys, early diagnosis, MDT treatment, health education campaigns, and the integration of leprosy services into primary care¹¹. Some detected cases involve the multi-bacillary (MB) type signifying a higher risk of transmission compared to the less infectious paucibacillary (PB) type¹⁷. Between 2010 and 2019 there has been a significant increase in both MB cases and cases among children²². Alarmingly, around 10% of new cases are among children, signalling ongoing community transmission and potential gaps in early detection efforts³.

Socio-economic factors affecting leprosy in Sri Lanka

Socio-economic factors significantly influence the prevalence and control of leprosy in Sri Lanka. Poverty, malnutrition, and poor living conditions, particularly in overcrowded and unsanitary urban slums, heighten the risk of leprosy transmission²³.

These conditions impair cell-mediated immunity making individuals more susceptible to infection through droplets or direct contact²⁴. Leprosy is predominantly found in certain urban slum areas within low socio-economic communities²⁵. Limited access to healthcare in rural and remote areas further complicates early detection and treatment which are critical for controlling transmission¹⁹.

Social stigma surrounding leprosy delays diagnosis and treatment as fear of discrimination and ostracism discourages individuals from seeking medical help²⁶. This stigma also perpetuates social and economic marginalization, reinforcing the cycle of poverty and vulnerability to the disease¹¹. Overcrowded and unsanitary living conditions particularly in low-income communities facilitate the spread of the *M. leprae* bacteria that causes leprosy²⁷. In general, limited awareness of leprosy symptoms, stigma and transmission hinders prevention efforts²⁸.

Healthcare and leprosy control programmes in Sri Lanka

Sri Lanka has advanced leprosy control through dedicated healthcare efforts. A key milestone was the 1989 social marketing campaign led by the ALC in collaboration with the Ministry of Health, Emmaus Switzerland for Leprosy Relief, and the Ciba-Geigy Leprosy Fund²⁹. This campaign aimed to reduce stigma, dispel fears, and encourage treatment seeking behaviour. Concurrently, the government strengthened leprosy control by establishing 225 clinics staffed with trained healthcare workers and Public Health Inspectors (PHIs), providing them with pocket calendars detailing clinic locations and schedules to facilitate referrals^{4,11}.

By 1991, 25 more clinics were added to meet rising demand²⁹. In 1999, leprosy services were integrated into the general healthcare system for better accessibility and sustainability¹⁵. District health teams, led by regional epidemiologists, managed cases and reporting, supported by re-orientation programs, awareness campaigns, and a robust record-keeping system. The community was informed of service changes and new service delivery locations through TV and radio campaigns, while a record-keeping system was implemented for effective leprosy case management^{4,15}. Free MDT and expanded treatment centers reduced patient costs, further aiding control efforts⁴.

Leprosy became notifiable in 2013, and contact tracing began in 2014 with PHIs conducting house-to-house surveys in high-prevalence areas, supported by government funding and the FAIRMED foundation²⁵. In 2016, Sri Lanka launched a national leprosy strategy, focusing on early detection, stigma reduction, and government involvement. In 2017, participation in the Leprosy Post-Exposure Prophylaxis (LPEP) program strengthened contact tracing. Before this, contact tracing was disorganized and mainly conducted in dermatology clinics with little focus on district-level coordination⁴.

In 2017, Sri Lanka introduced a web-based reporting system with Geographic Information Systems (GIS) mapping to enhance coordination between dermatologists and field staff⁴. The ALC also implemented Individual Patient Forms (IPFs) and notification forms to improve reporting and treatment adherence²⁰. Medical Officers of Health (MOH) oversee preventive services, addressing transmission, delayed presentations, care quality, and staff training²⁵.

Diagnosis of leprosy in Sri Lanka

Sri Lanka prioritizes clinical examination for leprosy diagnosis³⁰, focusing on key symptoms such as skin discoloration, nerve thickening with sensory loss, and muscle weakness, due to its accessibility and efficiency³¹. Additional tests, including skin smears, histopathology of skin lesions, and nerve conduction studies, are used to assist in diagnosing challenging cases³⁰. Suspected cases are referred from outpatient departments (OPDs), school medical inspections, general practitioners, Medical Officers of Health (MOHs), and PHIs²⁵.

Leprosy care is available nationwide, with the Central Leprosy Clinic (CLC) at the National Hospital of Sri Lanka (NHSL) serving as a hub for diagnosis, treatment, physiotherapy, counselling, and wound care²⁰. Specialized clinics also operate at NHSL, the Prison Hospital in Welikada for incarcerated patients, and the Lady Ridgeway Hospital for paediatric cases²⁵. Additionally, treatment is provided at dermatology clinics in base hospitals and higher-level facilities, under the care of Consultant Dermatologists³². In rural areas, "skin camps" offer free detection and treatment, while awareness initiatives led by young adults and schoolchildren help shape community attitudes4. The diagnosis and management of leprosy have been decentralized, with medical officers across the

country receiving training to manage leprosy independently³⁰.

The Slit Skin Smear (SSS) test is performed in hospital laboratories³³, where a sample from a suspected lesion is microscopically examined for leprosy bacteria. However, a negative result does not exclude the possibility of leprosy³⁴. Leprosy cases are categorized into PB and MB types for treatment. PB cases are characterized by 1 to 5 skin lesions with no detectable bacilli, while MB cases involve more than five lesions, nerve involvement, or the presence of detectable bacilli³⁵. Molecular techniques like polymerase chain reaction (PCR) are sparingly used to confirm negative cases and detect drug-resistant strains, while serological tests are not widely utilized in Sri Lanka^{33,36}.

Clinical manifestations and treatment outcomes

Leprosy is a chronic infectious disease affecting the skin, nerves, and mucous membranes, resulting in a spectrum of clinical manifestations, including sensory loss in skin lesions, which may appear as single or multiple patches, sometimes with nodules or raised areas³⁷. Facial involvement is frequent with "leonine facies" being a hallmark of lepromatous leprosy (LL)³⁸. This condition features thickened skin on the forehead, nose, ears, and chin, leading to a waxy, lion-like appearance, along with nodules, earlobe thickening, nasal blockages, and madarosis³⁸.

Advanced leprosy causes nerve damage, numbness, muscle weakness, and paralysis. Facial nerve involvement may lead to blindness, while mucous membrane damage can cause nasal congestion and nosebleeds. Loss of sensation increases the risk of unnoticed injuries. Without treatment, complications such as ulcers, paralysis, bone resorption, and facial disfigurement can occur³⁹.

MDT, combining antibiotics like dapsone, rifampicin, and clofazimine, is the cornerstone of treatment. PB cases require six months of therapy, while MB cases need 12 months with adjustments based on bacterial load determined by SSS tests^{8,40}.

Current situation of leprosy in Sri Lanka

Sri Lanka is one of the few countries to implement the Leprosy Elimination Monitoring Tool (LEMT) under real programmatic conditions, offering structured insights into sub-national progress⁴¹. While some areas have achieved elimination, others, such as Colombo, continue to experience ongoing transmission among children and adults. In this district, nearly all divisions (12 out of 13) still report active cases with only the Padukka division successfully interrupting child transmission although adult cases persist there (Figure II)^{8,33}.

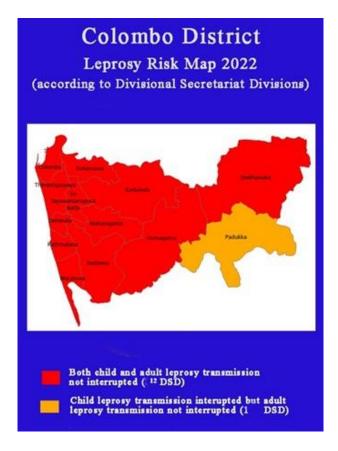


Figure II: Spread of leprosy within Colombo district according to Divisional Secretariate divisions (DSDs)⁸.

Colombo remains a high-risk district, reporting over 300 new cases annually⁸, with Moratuwa DS area alone accounting for one-third of the cases (Figure III)⁴².

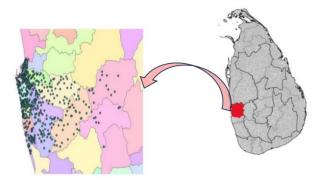


Figure III: Leprosy cases in Regional Directorate of Health Services (RDHS), Colombo from 2001 to 2022⁴²

Despite achieving elimination targets in the past, around 1,000 new cases are reported annually, with 10% occurring in children. The prevalence of leprosy among children in Sri Lanka rose to 11.06% in 2022 (Figure IV)⁴, contrasting with a global decline since 2012. This steady increase indicates ongoing community transmission, though the rate remained stable until 2021⁴.

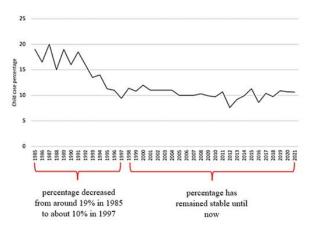


Figure IV: Percentage of reported child leprosy cases in Sri Lanka, 1985-2021⁴.

WHO indicators show child leprosy elimination in all districts of Central and Uva provinces and interruption in the Northern province including Mannar, Mullaitivu, and Kilinochchi districts. Among 330 DSDs, 55 achieved leprosy elimination, 14 are nearing targets, and 177 halted child transmission. However, 83 divisions still report both child and adult leprosy transmission in Sri Lanka⁴³.

The COVID-19 pandemic and Sri Lanka's economic crisis disrupted leprosy control, reducing case detection and limiting contact examinations during house-to-house surveys. This decline emphasizes the need for targeted interventions to identify undiagnosed cases⁴⁴. Poverty worsened by the economic downturn intensifies leprosy's impact, as the disease is tied to socio-economic conditions. Limited contact examinations by male PHIs during surveys lead to referrals for female contacts to a medical officer or dermatology clinic. Additionally, PHIs' broad public health duties may hinder their ability to accurately diagnose leprosy due to a lack of specialized clinical skills²⁵.

Efforts to combat leprosy in Sri Lanka persist despite challenges. The WHO provides crucial support through awareness campaigns, enhanced surveillance systems, and the National Strategic Plan (NSP) for 2021 to 2025, which focuses on

active case detection, improved data management, and access to quality care training programs enhance healthcare workers' diagnostic treatment abilities, while public awareness campaigns such as street dramas. leaflet distribution, and media broadcasts seek to reduce encourage timely treatment⁴⁵. and Technological advancements are also underway, with WHO partnering with a Centre of Excellence in Japan to develop a sentinel surveillance system for monitoring drug resistance in leprosy³. Although not yet implemented in Sri Lanka, this system is expected to strengthen laboratory diagnostics. by WHO's initiatives and Supported comprehensive national strategy, Sri Lanka is progressing toward the goal of zero leprosy transmission by 2030.

Future directions

Delayed diagnosis remains a significant challenge in controlling leprosy in Sri Lanka, contributing to ongoing transmission. Strengthening healthcare systems, training healthcare workers, and raising community awareness are essential to facilitate early detection, prompt treatment, and prevention of complications. Adherence to WHO-recommended MDT regimens is critical for successful treatment and transmission interruption. Additionally, exploring shorter treatment durations could enhance patient compliance and help reduce healthcare costs¹¹.

Future research aims to investigate environmental and genetic factors influencing leprosy transmission and to develop reliable diagnostic tools⁴⁶. Identifying the specific causative organism of leprosy in Sri Lanka through genetic testing is a key priority, as molecular diagnostic research in the country is limited. The prevalence Mycobacterium leprae and the potential presence of Mycobacterium lepromatosis or other endemic strains remain unknown. Cases of dual infections with both Mycobacterium leprae Mycobacterium lepromatosis have been mainly observed in Asia⁴⁷. Given that leprosy symptoms can take over a decade to manifest, advanced diagnostic tools capable of detecting infections in asymptomatic individuals are crucial. Such tools would enable earlier intervention, improved patient monitoring, and better management of the disease⁴⁸.

Conclusion

Leprosy in Sri Lanka reflects a complex interplay of historical, epidemiological, socio-economic, and healthcare factors. Despite achieving the WHO's elimination target in 1995, the rise in child cases highlights gaps in surveillance and control strategies. Efforts to combat the disease continue through integrated healthcare systems, public awareness campaigns, and international collaboration. However, the COVID-19 pandemic has disrupted diagnosis and control efforts emphasizing the need for resilient healthcare systems and crisis-specific interventions. Future research should prioritize early detection methods, improving treatment adherence, addressing socioeconomic drivers of transmission, and developing effective vaccines. Investigating environmental and genetic factors influencing leprosy transmission could further refine prevention and intervention strategies. While Sri Lanka has made notable strides controlling leprosy, persistent challenges underscore the need for sustained vigilance, innovation, and collaboration to achieve the goal of zero leprosy cases.

List of abbreviations

WHO World Health Organization
MDT Multi Drug Therapy
ALC Anti-Leprosy Campaign
BCG Bacillus Calmette-Guérin
NCDR New Case Detection Rate

MB Multi-Bacillary PB Paucibacillary

LPEP Leprosy Post-Exposure Prophylaxis
GIS Geographic Information Systems
MOH Medical Officers of Health
OPDs Outpatient Departments
PHIs Public Health Inspectors
CLC Central Leprosy Clinic
NHSL National Hospital of Sri Lanka

SSS Slit Skin Smear

PCR Polymerase Chain Reaction LL Lepromatous Leprosy

LEMT Leprosy Elimination Monitoring Tool
DSDs Divisional Secretariat divisions
RDHS Regional Director of Health Services

NSP National Strategic Plan

Acknowledgments

None

Conflict of Interest

The authors report no conflict of interest

Financial Disclosure

No funding was paid

Authors' contributions

Conceptualization and writing original draft: IA, MT, SS, GP; Project administration: NU, JK, IK, BD; Supervision: NU, JK, IK, BD; Writing-reviewing & editing: NU, JK, IK, BD; All authors read and approved the final manuscript.

Data Availability

Not applicable

Ethics Approval and Consent to Participate

No ethical review board approval was required.

Copyright: © Aluthgamage et al. 2025. Published by Bangladesh Journal of Infectious Diseases. This is an openaccess article and is licensed under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this license, please see:

https://www.creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Aluthgamage I, Thilakarathna M, Sathsarani S, Pabodha G, Uthayarajan N, Kottahachchi J, Kahawita I, Deepachandi B. Epidemiological Insights and Current Perspectives of Leprosy in Sri Lanka: A Narrative Review. Bangladesh J Infect Dis 2025;12(1):159-166

ORCID

Ishani Aluthgamage: https://orcid.org/0009-0007-7960-5596
Maheshi Thilakarathna: https://orcid.org/0009-0005-1643-1942
Sakuni Sathsarani: https://orcid.org/0009-0009-8441-0296
Gayathri Pabodha: https://orcid.org/0009-0001-7765-151X
Nivedha Uthayarajan: https://orcid.org/0009-0004-8925-058X
Jananie Kottahachchi: https://orcid.org/0000-0002-0321-3250
Indira Kahawita: https://orcid.org/0000-0003-3702-8093
Bhagya Deepachandi: https://orcid.org/0000-0001-7601-4845

Article Info

Received on: 7 May 2025 Accepted on: 28 May 2025 Published on: 1 June 2025

References

- 1. Han XY, Silva FJ. On the age of leprosy. PLoS Neglected Tropical Diseases. 2014;8(2):e2544.
- 2. Calderone A, Aloisi MC, Casella C, Fiannacca S, Cosenza B, Quartarone A, Calabrò RS. The neurological impact of leprosy: manifestations and treatment approaches. Neurology International. 2024;16(6):1492-508.
- 3. World Leprosy Day 2023: WHO calls for renewed efforts in the battle against leprosy [Internet]. Leprosy Review. [cited 2024 Sep 21]. Available from: https://www.who.int/srilanka/news/detail/29-01-2023-world-leprosy-day-2023--who-calls-for-renewed-efforts-in-the-battle-against-leprosy
- 4. Wijesinghe MS, Ranaweera KP, Fine P. Leprosy in Sri Lanka: epidemiological trends between 1985–2021. Leprosy Review. 2023;94(4):286-98.
- 5. Leprosy (Hansen disease) [Internet]. [cited 2024 Oct 29]. Available from: https://www.who.int/health-topics/leprosy#tab=tab1
- 6. Liyanage NR, Arnold M, Wijesinghe MS. Factors associated with treatment defaulting among adult leprosy patients in Sri Lanka: a case-control study. Leprosy Review. 2021;92(3):247-59.
- 7. Anti Leprosy Campaign | National performance indicators [Internet]. [cited 2025 Feb 21]. Available from: https://leprosycampaign.health.gov.lk/national-performance-indicators/
- 8. Anti Leprosy Campaign | Home [Internet]. [cited 2024 Oct 29]. Available from: https://leprosycampaign.health.gov.lk/
- 9. Roar media archive The lonely and the forgotten: The patients of the Mantheevu leprosy colony [Internet]. [cited 2025 Feb 21]. Available from:

https://archive.roar.media/english/life/in-the-know/leprosypatients-of-mantheevu-island

- 10. Arudchelvam U, Pulendran T, Sirimanne M, Pabasara S, Kahawita I, Chandraratne N. Stigma of People Affected by Leprosy and its determinants: a cross-sectional study in Sri Lanka. BMC Infectious Diseases. 2025;25(1):148.
- 11. Kasturiaratchi ND, Settinayake S, Grewal P. Processes and challenges: how the Sri Lankan health system managed the integration of leprosy services. Leprosy review. 2002;73(2):177-85.
- 12. Sermrittirong S, Van Brakel WH. Stigma in leprosy: concepts, causes and determinants. Leprosy Review. 2014;85(1):36-47.
- 13. Williams PG, Dewapura D, Gunawardene P, Settinayake S. Social marketing to eliminate leprosy in Sri Lanka. Social marketing quarterly. 1998;4(4):27-31
- 14. Somatunga LC. Status of leprosy-Sri Lankan experience. Japanese Journal of Leprosy. 2000;69(3):143-6.
- 15. Wijesinghe TS, Wijesinghe PR. Integration of leprosy services into the General Health Service in Sri Lanka: overcoming challenges to implementation in a remote district. WHO South-East Asia Journal of Public Health. 2013;2(1):63-8
- 16. Jufriyanto M, Yusuf A, Mundakir M. The psychosocial experiences in ex-Leprosy Patients: A Qualitative Study. STRADA: Jurnal Ilmiah Kesehatan. 2020;9(2):733-42.
- 17. Liyanage N. Leprosy the disease Part I. Weekly epidemiological report Sri Lanka 2021 A publication of the Epidemiology Unit Ministry of Health, Nutrition & Indigenous Medicine [Internet]. 2021. Available from: https://www.epid.gov.lk/storage/post/pdfs/vol_48_no_02-english1.pdf
- 18. Dewapura DR. The current state of leprosy control activities in Sri Lanka. Leprosy review. 1989;60(1):39-44.
- 19. Dabrera TM, Tillekeratne LG, Fernando MN, Kasturiaratchi SK, Østbye T. Prevalence and correlates of leprosy in a high-risk community setting in Sri Lanka. Asia Pacific Journal of Public Health. 2016;28(7):586-91.
- 20. Ferdinando R, Magodaratna LN, Chandraratne NK, Abeysinghe N, Piyasena D, Wijesinghe MS. Detailed case analysis of leprosy patients from 2015–2019 in Sri Lanka: Does data quality require improvement? Leprosy Review. 2024;95(2): e2023083
- 21. Kahawita IP. Leprosy Care in the Era of COVID-19. Nepal Journal of Dermatology, Venereology & Leprology. 2022;20(1):4-11
- 22. Anti leprosy campaign | National Strategic Plan 2021-2025. Towards zero leprosy, zero disability, zero discrimination. [Internet]. 2022 [cited 2024 Sep 21]. Available from:

https://leprosycampaign.health.gov.lk/alc_publications/national_strategic-plan-2021-2025/

- 23. Chang CC. World Health Organization Communicable disease epidemiological profile for Sri Lanka 2010 [Internet]. Geneva: World Health Organization. World Health Organization; 2010 [cited 2025 Feb 25]. 191 p. Available from: https://research.monash.edu/en/publications/world-health-organization-communicable-disease-epidemiological-pr
- 24. Alrehaili J. Leprosy classification, clinical features, epidemiology, and host immunological responses: Failure of eradication in 2023. Cureus. 2023;15(9):e44767
- 25. Liyanage NR, Arnold M, Wijesinghe S. Utilization of government healthcare services by adult leprosy patients in the Western Province, Sri Lanka. PLOS Negl Trop Dis. 2020;14(12):1–11
- 26. Dabrera TME, Jayamanne D, Suriyarachchi N, Shanthilatha P, et al. Validation of Sinhalese stigma Assessment and Reduction of Impact (SARI) scale to measure stigma related to leprosy in Sri Lanka. Lepr Rev. 2024;95(3):

- 27. Nery JA, Vieira LM, de Matos HJ, Gallo ME, Sarno EN. Reactional states in multibacillary Hansen disease patients during multidrug therapy. Rev Inst Med Trop Sao Paulo. 1998;40(6):363–70.
- 28. Singh R, Singh B, Mahato S. Community knowledge, attitude, and perceived stigma of leprosy amongst community members living in Dhanusha and Parsa districts of Southern Central Nepal. PLoS Neglected Tropical Diseases. 2019; 13(1):e0007075.
- 29. Dewapura DR. Leprosy control in Sri Lanka. World Health Forum. 1994;15(2):173–4.
- 30. Kahawita IP, Sirimanna MP. Is leprosy being diagnosed efficiently at the primary health care level? SLJ Dermatol. 2005:9:18
- 31. Liyanage N. Weekly epidemiological report Sri Lanka 2021 [Internet]. 2021 [cited 2025 Feb 25]. Available from: http://www.epid.gov.lk
- 32. Anti-Leprosy Campaign. Annual Reports 2020 [Internet]. Ministry of Health, Nutrition and Indigenous Medicine; 2020 [cited 2025 Feb 25]. Available from: https://leprosycampaign.health.gov.lk/alc_annual_reports/annual-reports-2020/
- 33. Deepachandi B. The Battle Against Leprosy in Sri Lanka. ICOBI. 2023;2:216–9
- 34. Chen KH, Lin CY, Su SB, Chen KT. Leprosy: a review of epidemiology, clinical diagnosis, and management. Journal of Tropical Medicine. 2022;2022(1):8652062.
- 35. World Health Organization. Guidelines for the diagnosis, treatment and prevention of leprosy. 2018 [cited 2024 Nov 25]; Available from: https://apps.who.int/iris/bitstream/handle/10665/274127/97892 90226383-eng.pdf
- 36. WHO. Global leprosy (Hansen disease) update, 2023: Elimination of leprosy disease is possible - Time to act! [Internet]. 2024 [cited 2024 Oct 29]. Available from: https://www.who.int/publications/i/item/who-wer9937-501-521 37. World Health Organization. Leprosy [Internet]. 25AD[cited 2025 Feb 25]. Available from: https://www.who.int/news-room/fact-sheets/detail/leprosy
- 38. Palaniappan V, Karthikeyan K. Leonine facies and

- madarosis in lepromatous leprosy. Postgraduate medical journal. 2022;98(1166):e36
- 39. Walker SL, Lockwood DNJ. Leprosy. Clin Dermatol.2007;25(2):165–72
- 40. Oskam L, Slim E, Bührer-Sékula S. Serology: recent developments, strengths, limitations and prospects: a state of the art overview. Leprosy review. 2003;74(3):196-205.
- 41. WHO. Leprosy elimination monitoring tool accompanies the WHO Technical guidance on interruption of transmission and elimination of leprosy disease. 2023 [cited 2024 Oct 29]; Available from: http://apps.who.int/bookorders
- 42. Kalubowila K, Dissanayake F, Tilakarathne M, Withanage S, Anujan S, Gajanayake C. Evidence of hidden leprosy diagnosed by active case finding in a highly endemic setting in Colombo district, Sri Lanka. Sri Lankan Journal of Medical Administration. 2024;24(2):112-8
- 43. Anti-Leprosy Campaign | District Level Achievements [Internet]. [cited 2024 Oct 29]. Available from: https://leprosycampaign.health.gov.lk/district-level-achievements/
- 44. Wipulasena A. Sri Lanka was winning its battle with leprosy. Then came COVID-19 [Internet]. 23AD [cited 2025 Feb 21]. Available from: https://www.gavi.org/vaccineswork/sri-lanka-was-winning-its-battle-leprosy-until-covid-19
- 45. Performance and progress report-2022 Ministry of Health Sri Lanka. 2022 [cited 2024 Sep 21]; Available from: https://www.health.gov.lk/moh-pages/performance-and-progress-report/
- 46. Mi Z, Liu H, Zhang F. Advances in the immunology and genetics of leprosy. Frontiers in immunology. 2020;11:567
- 47. Collin SM, Lima A, Heringer S, Sanders V, Pessotti HA, Deps P. Systematic review of Hansen disease attributed to *Mycobacterium lepromatosis*. Emerg Infect Dis. 2023;29(7):1376–85.
- 48. Goulart IMB, Araujo S, Filho AB, De Paiva PHR, Goulart LR. Asymptomatic leprosy infection among blood donors may predict disease development and suggests a potential mode of transmission. J Clin Microbiol. 2015;53(10):3345–8