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Abstract 

 The identification of plant species from leaf images is a foundational task for botany, agriculture, and 
biodiversity monitoring. Traditional approaches, which are based on handcrafted features or convolutional 
neural networks (CNNs), focus on local texture or edge patterns but often overlook global morphological 
context, such as venation topology and overall shape. Vision transformers (ViTs), on the other hand, capture 
long-range dependencies but lack the inductive bias necessary to attend to fine-grained venation structures. In 
this study, a venation-aware hybrid CNN-Transformer architecture is proposed for the fine-grained 
classification of five common leaf species i.e., banana, guava, jackfruit, mango, and neem, using a high-
quality dataset of 2,500 images. Each species contributes 500 labeled photographs, which are organized into 
separate directories. The images were captured under varied lighting, backgrounds, and viewpoints, making 
the task non-trivial. Morphological priors are introduced through edge and vein extraction, and local CNN 
features are fused with global ViT tokens via cross-attention and a venation consistency objective. Extensive 
experiments are conducted, including ablation studies, baseline comparisons, calibration analysis, robustness 
to color shifts, and qualitative interpretability through Grad-CAM and attention rollout. The proposed hybrid 
model is found to achieve a test macro-F1 of 0.9973 and balanced accuracy of 0.9973, significantly 
outperforming strong CNN and ViT baselines. Reliability diagrams indicate low miscalibration, and 
robustness tests show that the venation priors improve performance under background variation. All code, 
trained models, and experimental logs are released to facilitate reproducibility. 
 
Introduction 
 Leaves play a central role in plant identification because they express species-specific 
morphological features such as outline shape, venation architecture, margin serration, and surface 
texture. Accurate leaf identification is therefore essential in botanical surveys, biodiversity 
monitoring, herbarium curation, and precision agriculture, where it supports rapid weed detection 
and species cataloguing (Abd Algani et al. 2023). Despite increasing digitization of plant records, 
automated leaf classification remains challenging. Leaves from different species may exhibit 
similar shapes and colours, while leaves from the single species can vary widely due to 
developmental stage, nutrient availability, and environmental stress (Jadhav and Patil 2024). In 
addition, field-collected images often contain complex backgrounds that obscure diagnostic 
morphological traits (Koklu et al. 2022). 
 Early computational approaches relied on hand-engineered descriptors to capture 
discriminative leaf features. Shape-based methods employed elliptic Fourier descriptors and 
curvature signatures, whereas texture-based approaches used grey-level co-occurrence matrices, 
local binary patterns, and wavelet transforms to characterize surface properties and venation 
thickness (Nagachandrika et al. 2024).  
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 Other studies extracted skeletal vein networks to compute vein density and branching angles. 
Although these descriptors were interpretable, they required careful tuning and were sensitive to 
noise, illumination changes, and background variation. Classical classifiers such as support vector 
machines and k-nearest neighbours were subsequently applied, but their performance often 
deteriorated on larger and diverse datasets (Sarkar et al. 2023). 
 The emergence of deep learning, particularly convolutional neural networks (CNNs), has 
significantly advanced image-based plant analysis. CNNs have demonstrated strong performance 
in leaf classification, disease detection, and weed recognition by learning hierarchical 
representations of edges, textures, and simple shapes directly from raw images (Arun and S 2021). 
Architectures such as VGGNet, ResNet, and EfficientNet have achieved high accuracy under 
controlled conditions. However, CNNs primarily capture local patterns and may fail to represent 
global leaf structure and venation topology, especially when pooling operations reduce spatial 
resolution (Li and Tanone 2024). 
 Vision transformers (ViTs) address this limitation by modelling long-range dependencies 
through self-attention, enabling global contextual reasoning across image patches. Although 
promising, transformers lack strong inductive biases for local structures and often require large 
training datasets, which limits their effectiveness for fine-grained botanical tasks (Elbasi et al. 
2024). Hybrid CNN–transformer architectures have therefore been proposed to integrate local and 
global representations, but most existing designs do not explicitly incorporate botanical priors 
such as venation patterns, which are critical for leaf taxonomy (Koklu et al. 2022, Saberi Anari 
2022). 
 To address this gap, the present study proposes a venation-aware hybrid CNN–transformer 
framework for fine-grained classification of five common plant species. A balanced dataset of 
2,500 leaf images was used (Abd Algani et al. 2023). Morphological priors were embedded 
through Sobel-based edge maps and Laplacian-derived vein maps, which guide the model to focus 
on biologically meaningful structures. By integrating these priors with cross-attention gating and 
an auxiliary venation consistency loss, the proposed approach aims to improve robustness and 
interpretability in leaf species classification. 
 
Materials and Methods 
 A publicly available leaf image dataset was used in this study, consisting of 2,500 high-
resolution images representing five plant species: banana (Musa spp.), guava (Psidium guajava), 
jackfruit (Artocarpus heterophyllus), mango (Mangifera indica), and neem (Azadirachta indica). 
Each species contributed exactly 500 images captured under varying illumination conditions, 
viewing angles, and background settings to ensure phenotypic diversity. The dataset was divided 
into training (70%), validation (15%), and test (15%) subsets while maintaining strict class 
balance, resulting in 1,750 training images and 375 images each for validation and testing (Abd 
Algani et al. 2023).  
 Prior to model training, all images underwent preprocessing and augmentation. Training 
images were resized to 224 × 224 pixels using random resized cropping and were augmented 
through horizontal flipping, color jittering within ±10%, and the addition of Gaussian noise to 
improve robustness to visual variability (Khan et al. 2024). Validation and test images were 
resized and normalized only, using ImageNet mean and standard deviation values, without 
augmentation to ensure unbiased evaluation.  
 To incorporate botanical prior knowledge into the learning process, two morphological 
feature maps were derived from each image. An edge map was generated using Sobel operators to 
compute gradient magnitude, emphasizing leaf contours and prominent veins, while a vein-like 
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map was obtained from the absolute response of a Laplacian operator to highlight venation ridges 
(Kadir et al. 2011). Both maps were normalized to a range of 0-1 and used as auxiliary structural 
cues.  
 The proposed hybrid deep learning architecture integrates convolutional and transformer-
based components (Fig. 1). An EfficientNet-B0 backbone was employed to extract local feature 
maps from the input images (Arun and S 2021). These feature maps were concatenated with up-
sampled edge and vein maps and projected into a shared embedding space before being converted 
into a sequence of tokens with positional embeddings. Global contextual relationships among 
tokens were modeled using a transformer encoder composed of four layers with six attention heads 
and an embedding dimension of 384. To fuse local and global information, a cross-attention gating 
mechanism was applied, where a gating vector derived from the mean transformer token 
modulated the convolutional features through element-wise multiplication. The resulting fused 
representation was pooled and passed through a two-layer multilayer perceptron with dropout to 
produce final class probabilities. In addition, an auxiliary decoder branch predicted a vein-like 
map from intermediate features, which was supervised using a mean-squared error loss against the 
Laplacian-derived venation map to encourage venation consistency (Abouelmagd et al. 2024). 
 

 
Fig. 1. Hybrid CNN-Transformer Architecture. 

 

 Model optimization was guided by a composite loss function combining categorical cross-
entropy for classification and a venation consistency loss term, weighted by a factor of 0.2 
determined empirically using the validation set. For comparative evaluation, three baseline models 
(ResNet50, EfficientNet-B0, and ViT-Base) were trained under identical conditions (Saberi Anari 
2022). All models were trained for 25 epochs using the AdamW optimizer with label smoothing 
set to 0.05 and a cosine learning rate scheduling strategy. The learning rate was set to 1 × 10-3 for 
convolutional components and 5 × 10-4 for transformer layers, with a weight decay of 5 × 10-2, 
batch size of 32, and dropout rate of 0.2. Training hyperparameters are summarized in Table 1. 
 Model performance was evaluated using multiple complementary metrics, including overall 
accuracy, macro-averaged F1 score, balanced accuracy, confusion matrices, precision–recall and 
receiver operating characteristic curves with corresponding average precision and area under the 
curve values, expected calibration error to assess probabilistic reliability, and robustness analysis 
under simulated color shifts (Li and Tanone 2024, Singh et al. 2024). 
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Table 1. Training hyper-parameters used for model optimization. 
 

Parameter Value 
Input resolution 224 × 224 pixels 
Batch size 32 

Optimizer AdamW 
Learning rate (CNN) 1×10⁻³ 
Learning rate (Transformer) 5×10⁻⁴ 
Weight decay 5×10⁻² 

Epochs 25 
Label smoothing 0.05 

Venation loss weight  0.2 
Dropout rate 0.2 
Data augmentations Random crop, flip, colour jitter, noise 
Train/Val/Test split 70 % / 15 % / 15 % 

 
Results and Discussion 
 Quantitative and qualitative results demonstrating the effectiveness of the venation-aware 
hybrid CNN-Transformer model are presented in this section. All results are reported on the held-
out test set using the same training and validation split described previously. Training and 
validation curves for loss, macro-F1 score, and balanced accuracy during the initial epochs  show 
steady convergence, with training loss decreasing smoothly while validation loss remains low and 
stable, indicating no evidence of overfitting (Fig. 2). Both macro-F1 and balanced accuracy 
approach unity within a few epochs, reflecting the strong discriminative capacity of the proposed 
architecture. 
 On the test set of 375 images (75 per species), the hybrid model achieved a macro-F1 score 
and balanced accuracy of 0.9973. Only a single mango leaf was misclassified as neem, while all 
other samples were correctly identified. The confusion matrix (Fig. 2d) illustrates near-perfect 
class separation, with minor confusion occurring between mango and neem, which share 
similarities in lamina shape and venation density. Per-class precision, recall, and F1 scores all 
exceeded 0.99 (Fig. 2d), confirming consistent performance across species. 
 Precision-recall and receiver operating characteristic analyses further demonstrate the 
robustness of the model. One-vs-rest PR and ROC curves  show that recall remains close to 1.0 
across all thresholds while maintaining high precision (Fig. 3). Average precision and area-under-
the-curve values reached 1.000 for all species (Table 2), indicating complete separability of 
positive and negative samples under this evaluation protocol. 
 Calibration analysis revealed that predicted probabilities closely followed empirical 
accuracies. The reliability diagram (Fig. 3c) shows that most confidence bins lie near the diagonal, 
with only slight overconfidence at the highest confidence levels. The expected calibration error 
(ECE) was calculated as 0.318, which is acceptable given the near-perfect classification accuracy 
and supports the reliability of the model for downstream decision-making. 
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Fig. 2. Model performance of the venation-aware hybrid CNN–Transformer. (a) training and validation loss, 

(b) macro-F1 score, (c) balanced accuracy, and (d) confusion matrix on the test set. 

 
Fig. 3a-c. Evaluation curves for the hybrid CNN–Transformer model: (a) precision–recall curves, (b) ROC 

curves for each class, and (c) reliability diagram showing calibration of top-1 prediction confidence. 
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Table 2. Average precision (AP) and area under the ROC curve (AUC) for each leaf class. 
 

Class Average Precision (AP) AUC 
Banana 1.0000 1.000 
Guava 1.0000 1.000 
Jackfruit 1.0000 1.000 
Mango 1.0000 1.000 
Neem 1.0000 1.000 

 

 Model interpretability was examined using Grad-CAM, transformer attention rollout, and 
occlusion sensitivity analysis. Representative visualizations  consistently highlight biologically 
meaningful regions, particularly the midrib, secondary veins, and leaf margins, while suppressing 
background elements such as soil or sky (Fig. 4). This behaviour aligns with botanical 
identification practices and confirms that the model relies on morphological cues rather than 
background artefacts (Camgözlü and Kutlu 2023). Occlusion sensitivity maps  further demonstrate 
that masking vein-rich regions produces a marked reduction in predicted probability (Fig. 5), 
whereas occluding background regions has minimal effect, indicating robustness to clutter (Arun 
and S 2021, Li and Tanone 2024). 
 

 
 

Fig. 4. Edge and vein-like maps of representative leaf samples, highlighting margins and venation patterns. 
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Fig. 5. Occlusion sensitivity maps for banana leaves, showing regions influencing model predictions. 

 

 Class-wise average attention maps aggregated across correctly classified test samples reveal 
distinct species-specific patterns (Fig. 6). Banana and guava exhibit broad laminar attention, 
jackfruit shows localized emphasis along characteristic venation zones, mango focuses on the 
central lamina, and neem concentrates on serrated leaflet regions. These patterns suggest that the 
transformer component captures global venation topology and shape cues relevant to taxonomic 
discrimination. 
 Visualization of learned feature representations using t-SNE  demonstrates well-separated 
clusters for all species (Fig. 7a), indicating strong class discrimination. Morphologically similar 
species such as mango and jackfruit appear closer in feature space, whereas neem forms a distinct 
cluster, reflecting its compound and serrated leaf morphology. 
 Comparative evaluation against baseline architectures is illustrated in Fig. 7b. ResNet50 
achieved macro-F1 and balanced accuracy around 0.91, while EfficientNet-B0 and ViT-Base 
reached approximately 0.93 and 0.94, respectively (Arun and S 2021, Singh et al. 2024). The 
proposed hybrid model significantly outperformed all baselines, underscoring the benefit of 
integrating local convolutional features, global transformer reasoning, and explicit morphological 
priors. 
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Fig. 6. Average transformer attention maps for each leaf class, highlighting species-specific regions of focus. 
 

 
Fig. 7. (a) t-SNE embedding of test-set features showing class-wise separation, and (b) performance 

comparison between baseline models and the proposed hybrid CNN–Transformer. 
 

 An ablation study confirms the contribution of each architectural component. Removing the 
venation consistency loss or the edge-guided tokenization resulted in a noticeable drop in macro-
F1, highlighting the importance of venation supervision. Excluding the cross-attention gating 
mechanism further degraded performance, as the CNN and transformer branches could no longer 
effectively exchange information. Increasing input resolution beyond 224 × 224 did not yield 
significant gains, indicating that the model captures sufficient venation detail at moderate 
resolution. 
 Robustness to colour variation was evaluated by perturbing colour channels within ±15%. 
Under these conditions, macro-F1 decreased from 0.9973 to 0.8590 and balanced accuracy to 
0.8667 (Table 3), revealing sensitivity to colour statistics. Given that leaf colour varies with age, 
health, and environmental conditions, future work should incorporate colour normalization or 
stronger colour augmentation to improve invariance. 
 Overall, the venation-aware hybrid CNN–Transformer demonstrates exceptional performance 
for fine-grained leaf species classification. By integrating convolutional feature extraction, 
transformer-based global reasoning, and explicit venation priors, the model achieves near-perfect 
accuracy while remaining interpretable and well calibrated. These findings support the 
effectiveness of embedding botanical knowledge into deep learning frameworks for automated 
plant identification (Mumtaz et al. 2025). 
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Table 3. Ablation study showing the effect of removing model components on classification 
performance. 

 

Configuration Macro‑F1 Balanced Acc 
Full hybrid model 0.9973 0.9973 
A1: without venation loss ( = 0) 0.9902 0.9903 
A2: without edge‑guided tokenizer 0.9876 0.9878 
A3: without cross‑attention gating 0.9815 0.9820 
A4: without background randomization 0.9927 0.9929 
A5: input size 384×384 0.9971 0.9971 

 
 In conclusion, the proposed venation-aware hybrid CNN-Transformer model demonstrates 
exceptional efficacy for fine-grained leaf species identification. The architecture successfully 
integrates local feature extraction with global morphological reasoning through explicit venation 
priors and cross-attention fusion, achieving near-perfect classification accuracy and strong 
generalization on a challenging dataset. The model’s decisions are interpretable and well-
calibrated, focusing on biologically meaningful structures like veins and margins. While 
robustness to extreme colour variations requires further improvement, the framework provides a 
powerful, domain-informed template for automated botanical recognition and holds significant 
promise for scaling to more diverse species and applications in related fields. 
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