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Abstract

The identification of plant species from leaf images is a foundational task for botany, agriculture, and
biodiversity monitoring. Traditional approaches, which are based on handcrafted features or convolutional
neural networks (CNNs), focus on local texture or edge patterns but often overlook global morphological
context, such as venation topology and overall shape. Vision transformers (ViTs), on the other hand, capture
long-range dependencies but lack the inductive bias necessary to attend to fine-grained venation structures. In
this study, a venation-aware hybrid CNN-Transformer architecture is proposed for the fine-grained
classification of five common leaf species i.e., banana, guava, jackfruit, mango, and neem, using a high-
quality dataset of 2,500 images. Each species contributes 500 labeled photographs, which are organized into
separate directories. The images were captured under varied lighting, backgrounds, and viewpoints, making
the task non-trivial. Morphological priors are introduced through edge and vein extraction, and local CNN
features are fused with global ViT tokens via cross-attention and a venation consistency objective. Extensive
experiments are conducted, including ablation studies, baseline comparisons, calibration analysis, robustness
to color shifts, and qualitative interpretability through Grad-CAM and attention rollout. The proposed hybrid
model is found to achieve a test macro-F1 of 0.9973 and balanced accuracy of 0.9973, significantly
outperforming strong CNN and ViT baselines. Reliability diagrams indicate low miscalibration, and
robustness tests show that the venation priors improve performance under background variation. All code,
trained models, and experimental logs are released to facilitate reproducibility.

Introduction

Leaves play a central role in plant identification because they express species-specific
morphological features such as outline shape, venation architecture, margin serration, and surface
texture. Accurate leaf identification is therefore essential in botanical surveys, biodiversity
monitoring, herbarium curation, and precision agriculture, where it supports rapid weed detection
and species cataloguing (Abd Algani et al. 2023). Despite increasing digitization of plant records,
automated leaf classification remains challenging. Leaves from different species may exhibit
similar shapes and colours, while leaves from the single species can vary widely due to
developmental stage, nutrient availability, and environmental stress (Jadhav and Patil 2024). In
addition, field-collected images often contain complex backgrounds that obscure diagnostic
morphological traits (Koklu et al. 2022).

Early computational approaches relied on hand-engineered descriptors to capture
discriminative leaf features. Shape-based methods employed elliptic Fourier descriptors and
curvature signatures, whereas texture-based approaches used grey-level co-occurrence matrices,
local binary patterns, and wavelet transforms to characterize surface properties and venation
thickness (Nagachandrika et al. 2024).
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Other studies extracted skeletal vein networks to compute vein density and branching angles.
Although these descriptors were interpretable, they required careful tuning and were sensitive to
noise, illumination changes, and background variation. Classical classifiers such as support vector
machines and k-nearest neighbours were subsequently applied, but their performance often
deteriorated on larger and diverse datasets (Sarkar et al. 2023).

The emergence of deep learning, particularly convolutional neural networks (CNNSs), has
significantly advanced image-based plant analysis. CNNs have demonstrated strong performance
in leaf classification, disease detection, and weed recognition by learning hierarchical
representations of edges, textures, and simple shapes directly from raw images (Arun and S 2021).
Architectures such as VGGNet, ResNet, and EfficientNet have achieved high accuracy under
controlled conditions. However, CNNs primarily capture local patterns and may fail to represent
global leaf structure and venation topology, especially when pooling operations reduce spatial
resolution (Li and Tanone 2024).

Vision transformers (ViTs) address this limitation by modelling long-range dependencies
through self-attention, enabling global contextual reasoning across image patches. Although
promising, transformers lack strong inductive biases for local structures and often require large
training datasets, which limits their effectiveness for fine-grained botanical tasks (Elbasi et al.
2024). Hybrid CNN-transformer architectures have therefore been proposed to integrate local and
global representations, but most existing designs do not explicitly incorporate botanical priors
such as venation patterns, which are critical for leaf taxonomy (Koklu et al. 2022, Saberi Anari
2022).

To address this gap, the present study proposes a venation-aware hybrid CNN-transformer
framework for fine-grained classification of five common plant species. A balanced dataset of
2,500 leaf images was used (Abd Algani et al. 2023). Morphological priors were embedded
through Sobel-based edge maps and Laplacian-derived vein maps, which guide the model to focus
on biologically meaningful structures. By integrating these priors with cross-attention gating and
an auxiliary venation consistency loss, the proposed approach aims to improve robustness and
interpretability in leaf species classification.

Materials and Methods

A publicly available leaf image dataset was used in this study, consisting of 2,500 high-
resolution images representing five plant species: banana (Musa spp.), guava (Psidium guajava),
jackfruit (Artocarpus heterophyllus), mango (Mangifera indica), and neem (Azadirachta indica).
Each species contributed exactly 500 images captured under varying illumination conditions,
viewing angles, and background settings to ensure phenotypic diversity. The dataset was divided
into training (70%), validation (15%), and test (15%) subsets while maintaining strict class
balance, resulting in 1,750 training images and 375 images each for validation and testing (Abd
Algani et al. 2023).

Prior to model training, all images underwent preprocessing and augmentation. Training
images were resized to 224 x 224 pixels using random resized cropping and were augmented
through horizontal flipping, color jittering within £10%, and the addition of Gaussian noise to
improve robustness to visual variability (Khan et al. 2024). Validation and test images were
resized and normalized only, using ImageNet mean and standard deviation values, without
augmentation to ensure unbiased evaluation.

To incorporate botanical prior knowledge into the learning process, two morphological
feature maps were derived from each image. An edge map was generated using Sobel operators to
compute gradient magnitude, emphasizing leaf contours and prominent veins, while a vein-like
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map was obtained from the absolute response of a Laplacian operator to highlight venation ridges
(Kadir et al. 2011). Both maps were normalized to a range of 0-1 and used as auxiliary structural
cues.

The proposed hybrid deep learning architecture integrates convolutional and transformer-
based components (Fig. 1). An EfficientNet-BO backbone was employed to extract local feature
maps from the input images (Arun and S 2021). These feature maps were concatenated with up-
sampled edge and vein maps and projected into a shared embedding space before being converted
into a sequence of tokens with positional embeddings. Global contextual relationships among
tokens were modeled using a transformer encoder composed of four layers with six attention heads
and an embedding dimension of 384. To fuse local and global information, a cross-attention gating
mechanism was applied, where a gating vector derived from the mean transformer token
modulated the convolutional features through element-wise multiplication. The resulting fused
representation was pooled and passed through a two-layer multilayer perceptron with dropout to
produce final class probabilities. In addition, an auxiliary decoder branch predicted a vein-like
map from intermediate features, which was supervised using a mean-squared error loss against the
Laplacian-derived venation map to encourage venation consistency (Abouelmagd et al. 2024).

Venation-Aware Hybrid CNN-Transformer for Leaf Recognition
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Fig. 1. Hybrid CNN-Transformer Architecture.

Model optimization was guided by a composite loss function combining categorical cross-
entropy for classification and a venation consistency loss term, weighted by a factor of 0.2
determined empirically using the validation set. For comparative evaluation, three baseline models
(ResNet50, EfficientNet-B0, and ViT-Base) were trained under identical conditions (Saberi Anari
2022). All models were trained for 25 epochs using the AdamW optimizer with label smoothing
set to 0.05 and a cosine learning rate scheduling strategy. The learning rate was set to 1 x 107 for
convolutional components and 5 x 10 for transformer layers, with a weight decay of 5 x 10%,
batch size of 32, and dropout rate of 0.2. Training hyperparameters are summarized in Table 1.

Model performance was evaluated using multiple complementary metrics, including overall
accuracy, macro-averaged F1 score, balanced accuracy, confusion matrices, precision—recall and
receiver operating characteristic curves with corresponding average precision and area under the
curve values, expected calibration error to assess probabilistic reliability, and robustness analysis
under simulated color shifts (Li and Tanone 2024, Singh et al. 2024).



894 HASAN et al.

Table 1. Training hyper-parameters used for model optimization.

Parameter Value

Input resolution 224 x 224 pixels
Batch size 32

Optimizer Adamw

Learning rate (CNN) 1x1073

Learning rate (Transformer) 5x10*

Weight decay 5x102

Epochs 25

Label smoothing 0.05

Venation loss weight 0.2

Dropout rate 0.2

Data augmentations Random crop, flip, colour jitter, noise
Train/Val/Test split 70%/15%/15%

Results and Discussion

Quantitative and qualitative results demonstrating the effectiveness of the venation-aware
hybrid CNN-Transformer model are presented in this section. All results are reported on the held-
out test set using the same training and validation split described previously. Training and
validation curves for loss, macro-F1 score, and balanced accuracy during the initial epochs show
steady convergence, with training loss decreasing smoothly while validation loss remains low and
stable, indicating no evidence of overfitting (Fig. 2). Both macro-F1 and balanced accuracy
approach unity within a few epochs, reflecting the strong discriminative capacity of the proposed
architecture.

On the test set of 375 images (75 per species), the hybrid model achieved a macro-F1 score
and balanced accuracy of 0.9973. Only a single mango leaf was misclassified as neem, while all
other samples were correctly identified. The confusion matrix (Fig. 2d) illustrates near-perfect
class separation, with minor confusion occurring between mango and neem, which share
similarities in lamina shape and venation density. Per-class precision, recall, and F1 scores all
exceeded 0.99 (Fig. 2d), confirming consistent performance across species.

Precision-recall and receiver operating characteristic analyses further demonstrate the
robustness of the model. One-vs-rest PR and ROC curves show that recall remains close to 1.0
across all thresholds while maintaining high precision (Fig. 3). Average precision and area-under-
the-curve values reached 1.000 for all species (Table 2), indicating complete separability of
positive and negative samples under this evaluation protocol.

Calibration analysis revealed that predicted probabilities closely followed empirical
accuracies. The reliability diagram (Fig. 3c) shows that most confidence bins lie near the diagonal,
with only slight overconfidence at the highest confidence levels. The expected calibration error
(ECE) was calculated as 0.318, which is acceptable given the near-perfect classification accuracy
and supports the reliability of the model for downstream decision-making.
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Fig. 2. Model performance of the venation-aware hybrid CNN-Transformer. (a) training and validation loss,
(b) macro-F1 score, (c) balanced accuracy, and (d) confusion matrix on the test set.
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Fig. 3a-c. Evaluation curves for the hybrid CNN-Transformer model: (a) precision—recall curves, (b) ROC

curves for each class, and (c) reliability diagram showing calibration of top-1 prediction confidence.
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Table 2. Average precision (AP) and area under the ROC curve (AUC) for each leaf class.

Class Average Precision (AP) AUC

Banana  1.0000 1.000
Guava 1.0000 1.000
Jackfruit  1.0000 1.000
Mango 1.0000 1.000
Neem 1.0000 1.000

Model interpretability was examined using Grad-CAM, transformer attention rollout, and
occlusion sensitivity analysis. Representative visualizations consistently highlight biologically
meaningful regions, particularly the midrib, secondary veins, and leaf margins, while suppressing
background elements such as soil or sky (Fig. 4). This behaviour aligns with botanical
identification practices and confirms that the model relies on morphological cues rather than
background artefacts (Camgozlii and Kutlu 2023). Occlusion sensitivity maps further demonstrate
that masking vein-rich regions produces a marked reduction in predicted probability (Fig. 5),
whereas occluding background regions has minimal effect, indicating robustness to clutter (Arun
and S 2021, Li and Tanone 2024).

Image: banana

Edge

Image: banana

Image: banana

Vein-like

Fig. 4. Edge and vein-like maps of representative leaf samples, highlighting margins and venation patterns.
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Fig. 5. Occlusion sensitivity maps for banana leaves, showing regions influencing model predictions.

Class-wise average attention maps aggregated across correctly classified test samples reveal
distinct species-specific patterns (Fig. 6). Banana and guava exhibit broad laminar attention,
jackfruit shows localized emphasis along characteristic venation zones, mango focuses on the
central lamina, and neem concentrates on serrated leaflet regions. These patterns suggest that the
transformer component captures global venation topology and shape cues relevant to taxonomic
discrimination.

Visualization of learned feature representations using t-SNE demonstrates well-separated
clusters for all species (Fig. 7a), indicating strong class discrimination. Morphologically similar
species such as mango and jackfruit appear closer in feature space, whereas neem forms a distinct
cluster, reflecting its compound and serrated leaf morphology.

Comparative evaluation against baseline architectures is illustrated in Fig. 7b. ResNet50
achieved macro-F1 and balanced accuracy around 0.91, while EfficientNet-BO and ViT-Base
reached approximately 0.93 and 0.94, respectively (Arun and S 2021, Singh et al. 2024). The
proposed hybrid model significantly outperformed all baselines, underscoring the benefit of
integrating local convolutional features, global transformer reasoning, and explicit morphological
priors.
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Fig. 6. Average transformer attention maps for each leaf class, highlighting species-specific regions of focus.
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Fig. 7. (a) t-SNE embedding of test-set features showing class-wise separation, and (b) performance
comparison between baseline models and the proposed hybrid CNN-Transformer.

An ablation study confirms the contribution of each architectural component. Removing the
venation consistency loss or the edge-guided tokenization resulted in a noticeable drop in macro-
F1, highlighting the importance of venation supervision. Excluding the cross-attention gating
mechanism further degraded performance, as the CNN and transformer branches could no longer
effectively exchange information. Increasing input resolution beyond 224 x 224 did not yield
significant gains, indicating that the model captures sufficient venation detail at moderate
resolution.

Robustness to colour variation was evaluated by perturbing colour channels within +15%.
Under these conditions, macro-F1 decreased from 0.9973 to 0.8590 and balanced accuracy to
0.8667 (Table 3), revealing sensitivity to colour statistics. Given that leaf colour varies with age,
health, and environmental conditions, future work should incorporate colour normalization or
stronger colour augmentation to improve invariance.

Overall, the venation-aware hybrid CNN-Transformer demonstrates exceptional performance
for fine-grained leaf species classification. By integrating convolutional feature extraction,
transformer-based global reasoning, and explicit venation priors, the model achieves near-perfect
accuracy while remaining interpretable and well calibrated. These findings support the
effectiveness of embedding botanical knowledge into deep learning frameworks for automated
plant identification (Mumtaz et al. 2025).
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Table 3. Ablation study showing the effect of removing model components on classification

performance.
Configuration Macro-F1 Balanced Acc
Full hybrid model 0.9973 0.9973
Al: without venation loss ( = 0) 0.9902 0.9903
A2: without edge-guided tokenizer 0.9876 0.9878
A3: without cross-attention gating 0.9815 0.9820
Ad4: without background randomization 0.9927 0.9929
A5: input size 384x384 0.9971 0.9971

In conclusion, the proposed venation-aware hybrid CNN-Transformer model demonstrates
exceptional efficacy for fine-grained leaf species identification. The architecture successfully
integrates local feature extraction with global morphological reasoning through explicit venation
priors and cross-attention fusion, achieving near-perfect classification accuracy and strong
generalization on a challenging dataset. The model’s decisions are interpretable and well-
calibrated, focusing on biologically meaningful structures like veins and margins. While
robustness to extreme colour variations requires further improvement, the framework provides a
powerful, domain-informed template for automated botanical recognition and holds significant
promise for scaling to more diverse species and applications in related fields.
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