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Abstract

Eucommia ulmoides is endemic to China and has great development and utilization prospects. Seed
dormancy is the main obstacles to the effective propagation of Eucommia ulmoides Oliv. The study
investigated strategies for breaking dormancy and enhancing germination by evaluating the effects of
scarification, cold stratification, gibberellic acid (GAg), and their combined application at various
temperatures. Results showed that the seeds do not have a barrier to water absorption, layers of palisade cells
were not found in seeds, the intact seeds germinated at an optimum temperature with a low germination
percentage of 5%, scarification can release seed dormancy and stratification and gibberellic acid can also
break seed dormancy 15°C was the optimum temperature for seed germination. These findings
demonstrated that E. ulmoides seeds exhibited physiological dormancy (PD) by scarification and
stratification with GAz application.

Introduction

Seed germination and dormancy are crucial aspects of seed quality, and comprehending these
processes is indispensable for establishing a sound seed production system. These processes are
primarily regulated by various physiological mechanisms and environmental factors (Finch-
Savage 2010). Bois et al. (2006) identified the optimal temperature for maximum germination,
while low temperatures could lead to complete inhibition in certain seeds due to embryo mortality.
Various studies have elucidated the roles of hormones like auxin and gibberellin in seed vigor and
germination (He et al. 2020, Lv et al. 2021).

The process of scarification, involves weakening or rupturing the seed coat through
mechanical or other means, enhances germination rates by increasing water and air permeability
and releasing mechanical constraints on embryo germination (Paudyal et al. 2021, Nawrot-
Chorabik et al. 2021). Following seed dispersal, treatments that simulate natural overwintering
conditions can release the seeds from dormancy (Chien et al. 2011).The range of temperatures
usually used for stratification of seeds of some pine species was between 2 and 5°C (HouSkova
et al. 2021), thus allowing germination to occur at temperatures above 15°C (Song et al. 2023).
Cold stratification is commonly used to break dormancy in water-permeable seeds of many
temperate-zone species, especially those whose seeds germinate in the natural habitat in spring. In
some species, cold stratification is not very effective in breaking dormancy unless it is preceded by
several weeks of warm (>15°C) moist stratification (Chien et al. 2011). Many biochemical and
structural changes are known to occur in seeds during cold stratification (Bewley et al. 2013)

Eucommia ulmoides Oliv.holds significant medicinal and economic value, yet its seed
propagation faces challenges due to deep dormancy (Xu and Bai 1993). Despite efforts involving
stratification or dry storage, germination rates remain low (Cheng et al. 2013), highlighting the
need for further understanding of seed germination and dormancy in this species.
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Therefore, this study aims to investigate the basic characteristics of E. ulmoides seeds,
identify the optimal germination temperature, and assess the effects of different treatments on seed
germination.

Materials and Methods

The E. ulmoides seeds were collected from Fengle Avenue, Chuzhou, and subsequently stored
at ambient temperature within the Plant Physiology Laboratory of Chuzhou University.
Assessment of seed viability was conducted through tetrazolium (TZ) tests (Xue et al. 2017).
Fresh seeds were subjected to staining with a 0.5% TZ solution at 35°C for a duration of 12 hrs.
Each treatment involved two replicates of 100 seeds. Submersion of seeds occurred in 200 ml of
0.5% (w/v) TZ solution within a beaker at 35°C for 12 hrs in darkness. Seeds were subsequently
categorized based on staining patterns, ranging from fully stained to completely unstained.

To explore the potential influence of seed coat and endosperm on water absorption, variations
in absorption rates were examined among intact seeds, scarified seeds, and embryos. Water
absorption curves were generated following the methodology outlined by Li (2020). Each
experiment was replicated four times with 30 seeds. Seeds subjected to different treatments,
including intact seeds (Fig. 1-CKj), seeds with fruit coat removed (Fig. 1-CK), and seeds with
both fruit coat and embryo exposed (Fig. 1-CKj3), were evenly distributed in Petri dishes
containing distilled water at room temperature. Regular weighing of seeds were taken at intervals
adjusted according to test progression.
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Fig. 1. Photographs of Eucommia ulmoides seeds.

Microstructural investigations were carried out using a scanning electron microscope (SEM)
Quanta 200 (FEI Ltd, United States), capturing images of various sections such as suture, fracture,
and outer surfaces of the endocarp. Samples were coated with a 10-20 nm thick layer of gold.

Eucommia ulmoides seeds were randomly selected, and treated with three methods to evaluate
germination. Intact seeds (Fig. 1-CK;) were soaked at for 7 days, then placed in a germination
box covered with moist absorbent cotton. In treatments CK, and CKj3, the fruit coat was removed
in CK; (Fig. 1-CK), and the seeds were soaked at room temperature for one day before being
placed in a germination box with moist cotton, while in CK; (Fig. 1-CKj3), the fruit coat was
removed and embryo was further cut to expose the radicle before undergoing the same soaking
and germination procedure.
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Each treatment involved three replications of 100 seeds. Germination boxes were then
incubated overnight at 15, 20 and 25°C. The emergence of a 1 mm radical served as the criterion
for seed germination, with germination percentage and rate recorded daily for 30 days (Xue et al.
2023).

For physical treatment seeds were randomly selected and treated with various methods
(Treatment A-L), such as Treatment A: Intact seeds; B: Removed half of the fruit coat from the
radicle end; C: Removed half of the fruit coat from the cotyledon end; D: Removed a small
portion of the fruit coat at the radicle end without destroying the endosperm; E: Removed a small
portion of fruit coat, endosperm and radicle at the end of radicle; F: Removed fruit coat;
G:Removed fruit coat, and cut a small portion of endosperm and radicle; H: Removed a small part
of the endosperm at the end of the radicle without destroying the embryo; I: Keep a small part of
the endosperm and radicle at the end of the radicle; J: Cutted endosperm at 1/3 of the radicle
without damaging the embryo; K: Cutted endosperm at the end of the radicle and L: Isolated
embryo. Followed by soaking at room temperature and placement in germination boxes covered
with moist absorbent cotton. Each treatment comprised of three replications of 100 seeds.
Germination boxes were incubated overnight at 15°C temperatures.

A

Fig. 2. Photogtaphs of Eucommia ulmoides seeds with different physical treatments.
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For cold stratification treatment seeds were subjected to 60 days for cold stratification at 4°C,
followed by germination assessment at different temperatures. For hormone treatment seeds were
randomly selected and soaked for 24 hrs in a 1 g/l GA; solution, followed by germination at
different temperatures. For combined treatment seeds underwent soaking for 24 hrsin a 1 g/l GA;
solution, then were placed at 4°C for 60 days. Intact seeds (cold stratification + GA;3) were
subsequently germinated at different temperatures.

Data analysis was conducted using SPSS 20, with measures of dispersion analyzed and results
compared utilizing the least significant difference method.

Results and Discussion

Tetrazolium tests, indicated that seeds were fully stained dark red, demonstrating a fresh seed
viability of 100%. Since water availability is crucial for seed germination, the water absorption
capabilities under various seed conditions were examined. After 2 days, the radical moisture
content reached 35% in CKj; seeds and 25% in isolated embryos (CKj), both were significantly
higher than in intact seeds (Fig. 3).
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However, the endosperm moisture content across different seed treatments exhibited no
significant differences (Fig. 3). It was also observed that all treatments, including intact seeds,
absorbed water after soaking, with embryos showing quicker imbibition. These findings suggested
that scarification enhanced the water absorption capability of the seeds, potentially promoting seed
germination.
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Fig. 3. Water absorption curves of the intact seeds, scarified seeds, and excised embryos of Eucommia ulmoides. CK;:

intact seeds, CK;: the fruit coat removed, CKjs: the fruit coat removed and embryo was cutted to expose the radicle.
The percentage of water absorption was expressed as mean + standard error.

Jlr s

Plate 1. Eucommia ulmoides seeds. a: Photographs fruitcoat, b: seed coat, c: endosperm, d-e: endosperm surface layer.
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Plate 2. Scanning electron microscope photographs of Eucommla ulmoides seeds a-c:peel section, d-f: endosperm surface
layer. a: fruit coat, b: fruit coat, c: fruit coat; d: endosperm surface layer (1 mm), e: endosperm surface layer (100um)
and f: endosperm surface layer (50 um).

The morphological structure of E. ulmoides seeds was detailed, highlighting the fruit coat
(position "a"), which did not exist palisade cell layers, and the seed coat (position "b")
characterized by a loose surface arrangement with pores and thin, degraded filaments. The
endosperm (position "c") and its surface (position "e") were also examined (Plate 1. SEM results
corroborated the absence of palisade cell layers, provided insights into the seed structure (Plate 2).

Fig. 4 illustrated the germination progress of seeds under various treatments and temperatures.
Treatment CK; exhibited minimal germination across all temperatures, indicating seed dormancy.
In contrast, seeds without endocarps (CK;) germinated more effectively than intact seeds and
CK3, which involved an additional intervention, achieved a germination rate of 95%, effectively
breaking seed dormancy.
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Fig. 4. Germination process of Eucommia ulmoides seeds at 15, 20, and 25°C. CK;: intact seeds, CK,: fruit coat was
removed, CKj: fruit coat was removed and embryo was cut to expose the radicle.
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Further analysis revealed that the germination percentage significantly increased at 15°C
(Fig. 4). Fig. 5 confirmed the presence of deep seed dormancy in intact seeds, which germinated at
only 5% under optimal conditions. Removal of the seed endocarp was an effective method for
overcoming this dormancy. Moreover, seeds treated with CK; not only showed the highest
germination rate (95%) at 15°C but also maintained a high germination rate (85%) at 20°C.

Seeds from all treatments germinated more effectively at 15°C compared to 20 and 25°C
(Figs 4-6). These results collectively suggest that the optimal temperature for germinating
E. ulmoides seeds was 15°C and the seeds from treatment CK; germinated most rapidly.
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Fig. 5. Germination percentage of Eucommia ulmoides seeds at 15, 20, and 25°C. Abbreviations are similar as in Fig. 4.

20 18.88a

19|
18|
17
16|
g
e 13
6.3d
| 0.33f
‘ 15

Fig. 6. Germination rate of Eucommia ulmoides seeds at 15, 20, and 25°C. Abbreviations are similar as in Fig. 4.
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Observations also revealed that whole Eucommia seeds rarely germinated (Figs 4-6).
However, removing the fruit coat significantly enhanced germination rates, and further increase
were noted upon cutting the endosperm. The optimum germination temperature for seeds was
identified as 15°C, significantly outperforming the results at 20 and 25°C.
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In this study, it was found that only 5% of freshly harvested, intact seeds germinated at their
optimum temperature. The viability test for the ungerminated seeds suggested that they were
viable but dormant, indicating the presence of seed dormancy. Physical dormancy, results from the
presence of palisade cells in the seed coat or fruit covering, imposing a barrier to water absorption
(Baskin and Baskin 2004). However, in this study, E. ulmoides seeds (Plates 1, 2 and Fig. 4),
lacked palisade cells or water absorption barriers, excluding physical dormancy (PY) and
combinational dormancy (PY + PD) as forms of dormancy for these seeds. Underdeveloped
embryos, indicative of MD or MPD (Finch-Savage 2010), were not observed due to the presence
of developed embryos, suggesting physiological dormancy as the dormancy type in E. ulmoides
seeds.

The study also highlighted that intact seeds (CK;) showed almost no germination across
different temperatures (Fig. 6). Conversely, seeds devoid of endocarps (CK;) demonstrated
enhanced germination, particularly at 15°C, with a germination percentage of 95%, suggesting this
as the optimal germination temperature for seeds.

The results indicated that Eucommia seeds exhibited physiological dormancy. Removal of the
fruit coat alleviated this dormancy to some extent, while concurrent removal of the fruit coat and
disruption of the endosperm effectively overcame it. Figs 7-9 illustrated the germination effects of
12 distinct treatments on E. ulmoides seeds.
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Fig. 7. Germination process of Eucommia ulmoides seeds with different treatment at 15°C.
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Fig. 8. Germination percentage of Eucommia ulmoides seeds with different treatment at 15°C.
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Fig. 9. Germination rate of Eucommia ulmoides seeds with different treatment at 15°C.

Treatments preserving the intact fruit coat (A) or partially removing it (B, C, D, and E)
resulted in poor germination rates, with fewer than 10% of seeds germinating. However, complete
removal of the fruit coat (F) significantly enhanced germination rates to 54%. Further, disrupting
the endosperm (G- H, K-L) markedly increased both the percentage of seeds germinating and the
rate of germination. The data suggested that the fruit coat and endosperm differentially affect seed
germination. The fruit coat impeded germination through lateral pressure exerted by the seed shell,
rather than directly obstructing the radicle end. Conversely, the endosperm hindered germination
by blocking the radicle end. Cutted endosperm (I- J) reduced this pressure, allowing the seeds to
germinate in response.

Scarification emerged as an effective method for breaking seed dormancy in seeds with hard
coats.  Significantly higher germination rates (94, 95, 97, and 96%) were observed for treatments
G, H, K, and L (Figs 7-10), emphasizing the mechanical barrier posed by the seed coat to embryo
germination (Deng et al. 2021).
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Fig. 10. Germination process of Eucommia ulmoides seeds with cold stratification treatment at 15, 20, and 25°C.

Cold stratification partially releaseed seed dormancy, resulting in a germination rate of 70%
(Fig. 10). Conversely, treatment with GA; for 60 days was not effective in enhancing seed
germination, which remained low at 12% (Fig. 11). A combined treatment of cold stratification
and GA; effectively overcomed seed dormancy, significantly improved germination rates to 82%
(Fig. 12). In conclusion, an appropriate temperature, scarification, phytohormone application, and
cold moisture stratification were efficacious in breaking seed dormancy and promoting the
germination of seeds.
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Fig. 11. Germination process of Eucommia ulmoides seeds with GA; at 15, 20, and 25°C.
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Fig. 12. Germination process of Eucommia ulmoides seeds with cold stratification+GA; treatment at 15, 20, and 25°C.

Cold stratification could release part of seed dormancy (60% germination). Moreover, in
temperate climates, seeds required low temperatures to break dormancy, a physiological
mechanism was observed in summer annuals and most temperate perennials (Blandino et al. 2022).
In natural environments, such a cold stratification requirement could prevent germination during
autumn conditions that were only temporarily suitable for seedling establishment, thus
coordinating seedling emergence with favorable seasons and preventing frost damage to seedlings
(Wang et al. 2017). Since seedling emergence and establishment were the most vulnerable life

phases for plants, breaking dormancy following winter ensured species survival as a seed
(Song et al. 2023).

GA; treatment in this study did not show good effect on seed germination (8%) (Fig. 11).
Combined treatment of GA and ABA during seed germination progress, Liu et al. (2024) showed
that GA; was decreased before germination and increased after germination. ABA increased
during water absorption, decreased before germination, and increased again after germination. The
hormonal control of dormancy is exerted through the balance between the two most important
hormones that regulate it. Abscisic acid (ABA), increased dormancy, and gibberellic acid (GA),
reduced it. Their impact was caused by variations in the content, as well as the sensitivity of seeds
to them (Bewley and Black 1994).

Cold stratification+GA; treatment could release seed dormancy (80% germination) (Fig. 12).
The dry-stored Hydrocharis dubia seeds treated with 30 days cold stratification treatment with
GA; showed the highest germination percentage (Xue et al. 2023). Stratification treatment and
hormone treatment was better than single treatment.
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This research established that E. ulmoides seeds exhibited physiological dormancy, with
scarification, and a combination of cold stratification and gibberellic acid treatment being effective
in breaking dormancy. The optimum temperature for seed germination was identified as 15°C.
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