

ISOLATION OF MULTIDRUG-RESISTANT *ACINETOBACTER CALCOACETICUS* STRAINS FROM RHIZOSPHERE OF TOMATO

RONIA PARVIN AND FARZANA ASHRAFI NEELA*

Environmental Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi-6205, Bangladesh

Keywords: *Acinetobacter calcoaceticus*, Rhizosphere, *Acinetobacter* spp., Multidrug resistance

Abstract

Acinetobacter species have significant challenges as pathogens because of their resistance to various antibiotics. Most studies have focused on clinically significant multidrug-resistant *A. baumannii* strains. This is the first report on multidrug-resistant *A. calcoaceticus* strains from soil in Bangladesh. A total of four tetracycline-resistant *A. calcoaceticus* strains were isolated from the rhizosphere soil of a tomato field. To profile their multidrug resistance patterns, the strains were examined by the Kirby-Bauer disk diffusion method using ten antibiotics from seven different classes. Multidrug-resistant strains were identified by 16S rRNA gene analysis and these strains were found to be highly resistant to ampicillin, erythromycin, and colistin. Among the four strains, the tetracycline-resistant BOTRUEML127 demonstrated the most significant resistance profile against eight antibiotics belonging to five different classes. Multidrug-resistant *A. calcoaceticus* indicates a risk of severe infection if the soil isolates are disseminated into the hospital environment.

Introduction

Acinetobacter species are ubiquitous and can be found in various environmental sources such as soil, water, wastewater, landfills, as well as in human, animal, and agricultural products (Doughari *et al.* 2011). These environmental isolates often carry antibiotic resistance genes; therefore, they may serve as an important environmental reservoir for resistance elements that develop into clinically relevant bacteria (Al Atrouni *et al.* 2016). Due to their ability to survive in a diverse environment, *Acinetobacter* species are one of the most common pathogens in hospitals (Espinol *et al.* 2012). Professionals are challenged to formulate strategic treatment plans for patients infected with intrinsically antimicrobial-resistant *Acinetobacter* strains (Vázquez-López *et al.* 2020). *Acinetobacter* strains have shown alarming trends in resistance to several major classes of antimicrobials, including beta-lactams, aminoglycosides, and fluoroquinolones (Weinstein *et al.* 2005). Recent research has reported that *Acinetobacter* spp. can be introduced into the hospital environment via the food chain (Campos *et al.* 2019). Several studies have also highlighted the presence of multidrug-resistant (MDR) *Acinetobacter* spp. in agricultural products (Carvalheira *et al.* 2017). Unfortunately, in recent years, the prevalence of MDR *Acinetobacter* isolates has increased significantly (Weinstein *et al.* 2005), and according to the WHO, *Acinetobacter* are classified among the most serious MDR microorganisms (Boucher *et al.* 2009). Therefore, *Acinetobacter* spp. exposure in the environment should not be ignored as a possible infection agent. The antibiotic resistance and species distribution of *Acinetobacter* spp., especially *A. baumannii* from hospitals have been well studied (Zeana *et al.* 2003). In Bangladesh, most studies reported the prevalence of multidrug-resistant *Acinetobacter* spp. including *A. baumannii* isolated from the clinical environment (Khatun *et al.* 2016). However, data on environmental *Acinetobacter* spp. are scarce in Bangladesh.

Acinetobacter calcoaceticus is one of the members of the *Acinetobacter baumannii-caldoaceticus* (ABC) complex, which is phenotypically similar to *Acinetobacter* species but

*Author for correspondence: <farzananeelabot@ru.ac.bd>.

genetically distinct (Glover *et al.* 2022). This complex harbored six species, among which most studies on antimicrobial resistance (AMR) of *Acinetobacter* species have focused on *A. baumannii* in clinical infections (Vázquez-López *et al.* 2020). Strains of *A. calcoaceticus* are also isolated, but less frequently (Glover *et al.* 2022). The occurrence of clinically important MDR *A. calcoaceticus* in agricultural soil is very rare. Therefore, this study aimed to isolate tetracycline-resistant *Acinetobacter calcoaceticus* from agricultural soil and highlight its multidrug resistance profiles to ten antibiotics belonging to seven different classes, particularly fourth-generation antibiotics, which have potential implications for public health.

Materials and Methods

Fresh rhizosphere and bulk soil samples were collected from four commercial tomato fields at Nowhata (24°45'76"N, 88°61'66"E) and Katakali (24°21'13"N, 89°22'60"E), Rajshahi. A total of eight soil samples of approximately 15 g were collected. The samples were carried to the laboratory on ice. The soil samples were sieved and stored at 4°C in zip-lock bags until further processing.

For each soil sample, a ten-fold serial dilution was made. Then, 100 µL of each diluted sample was inoculated onto nutrient agar supplemented with 32 and 64 µg/ml tetracycline (TC) (Sigma pharmaceuticals). Strains resistant to ≥ 32 µg/ml TC were defined as "TC-resistant strain" (Neela *et al.* 2007). The plates were incubated at 37°C for 24 hrs. Finally, morphologically different colonies were selected and purified and kept at -20°C.

The isolated TC-resistant bacteria were tested for their antimicrobial susceptibility to ten antibiotics (HiMedia, India) belonging to seven different classes by the Kirby-Bauer disk diffusion method on Mueller-Hinton medium (HiMedia, India), according to the Clinical and Laboratory Standards Institute guidelines (CLSI 2020). The measured zones of inhibition were compared with the CLSI standard interpretation table and designated as susceptible (S), intermediate (I), and resistant (R). In this study, the term "multidrug-resistant" (MDR) was used for isolates resistant to antibiotics of at least three different antimicrobial classes (Maravić *et al.* 2016).

Among the 48 TC-resistant isolates, 22 isolates were selected for identification based on their antibiogram profiles. To identify the isolates, PCR analysis was performed at a reference laboratory (Central Dogma Lab., Invent Technologies Ltd., Mirpur 2, Dhaka). The 16S rRNA gene sequence was approximately 1,500 base pairs (bp) long. PCR amplification of the 16S rRNA gene was performed using primers 27F (5'-CGGTTACCTTGTACGACTT-3') and 1492R (5'-CGGTTACCTTGTACGACTT-3') as performed by Suresh *et al.* (2022). Sequence data were retrieved, and consensus sequences were created by merging forward and reverse reads using BioEdit Sequence Alignment Editor Version 7.2 (<https://bioedit.software.informer.com/7.2/>). To identify bacterial species, online similarity searches were performed using the Basic Local Alignment Search Tool (BLAST) (<http://blast.ncbi.nlm.nih.gov/>). Phylogenetic analysis was done by using the NCBI database and Phylogeny.fr web-based software (<https://www.phylogeny.fr>).

Results and Discussion

A total of four multidrug-resistant *A. calcoaceticus* strains were isolated from the rhizosphere soil of a tomato field and identified by 16S rRNA gene sequencing in this study. The raw nucleotide sequences obtained from these four strains were analyzed using BLAST programs and confirmed that the isolates belonged to *A. calcoaceticus*. The phylogenetic tree of the 4 isolated strains was constructed, showing their relationship with each other (Fig. 1). Partial 16S rRNA sequences have been deposited in GenBank, detailed data are provided in the supplementary table. Some reports also mention the isolation of *A. calcoaceticus* from soil in Canada (Ho *et al.* 2020) and from the

rhizosphere zone of *Zea mays* and *Brassica oleracea* (Uniyal *et al.* 2016, Ghoreishi and Etemadifar 2017). In Bangladesh, *A. calcoaceticus* was also reported from rhizosphere soil of sugarcane as diazotrophic bacteria (Hossain *et al.* 2020).

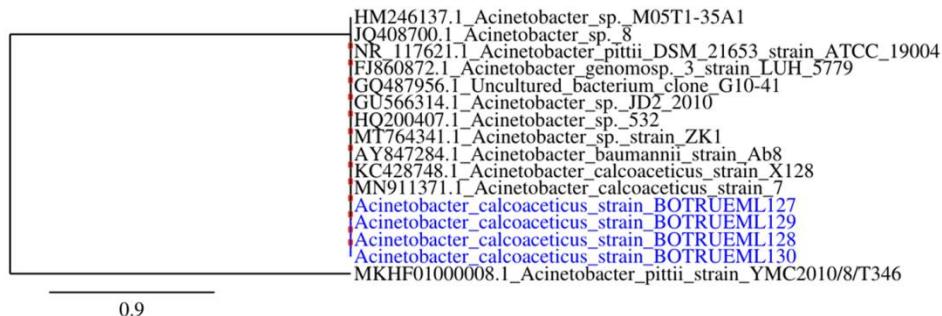


Fig. 1. Phylogenetic tree. Taxa labeled with colored (light blue) indicate the bacterial isolates in the present study. Other sequences were obtained from the NCBI database.

Table 1. Multidrug-resistance profile of TC-resistant *Acinetobacter calcoaceticus*.

Class	Antibiotics	Concen- tration	Acinetobacter calcoaceticus			
			BOTRUML Category 127	BOTRUML Category 128	BOTRUML Category 129	BOTRUML Category 130
Tetracyclines	Oxytetracycline	30 µg	14*	I**	11	R
Carbapenem	Meropenem	10 µg	6	R	20	S
Penicillin	Ampicillin	10 µg	0	R	0	R
Penicillin	Amoxicillin	30 µg	0	R	37	S
Aminoglycoside	Gentamicin	10 µg	0	R	28	S
Aminoglycoside	Kanamycin	30 µg	0	R	16	I
Macrolides	Azithromycin	15 µg	0	R	11	R
Macrolides	Erythromycin	15 µg	0	R	12	R
Polymixins	Colistin	10 µg	0	R	10	R
Fluoroquinolone	Ciprofloxacin	5 µg	24	S	26	S
					26	S
					28	S

*Zone of inhibition (mm), **I: Intermediate, R: Resistant, S: Sensitive.

In this study, the antimicrobial resistance profile of TC-resistant *A. calcoaceticus* strains was presented in Table 1, indicating that all isolates were multidrug-resistant as they were resistant to ≥ 3 different antimicrobial classes (Maravić *et al.* 2016). Here, all TC-resistant *Acinetobacter* strains were resistant to ampicillin, erythromycin, and colistin. One study that directly focused on commercially available clinical *A. calcoaceticus* was resistant to erythromycin and colistin (Glover *et al.* 2022), consistent with the results of the present study. Among the four TC-resistant *A. calcoaceticus* isolates, BOTRUML127 showed resistance to eight antibiotics belonging to five different classes (Fig. 2). The morphological characteristics of *A. calcoaceticus* BOTRUML127 strain was presented in Fig. 3. Multidrug-resistant environmental strains of *A. baumannii* from the soil of Mangaluru city, India showed resistance to aminoglycosides, tetracycline, and carbapenems (Suresh *et al.* 2022). *Acinetobacter baumannii* ATCC 19606 and *A. calcoaceticus* share a similar antibiotic resistance profile (Glover *et al.* 2022). In this study, *A. calcoaceticus* BOTRUML127 showed a similar resistance profile to those reported *A. baumannii* suggesting that isolate BOTRUML127 could cause significant diseases like *A. baumannii* if it spreads from soil to the hospital settings. The antimicrobial resistance pattern of four *A. calcoaceticus* strains in this study

was different, despite being isolated from the same geographic area and phylogenetically closely related, suggesting that antibiotic resistance varies by strain. Strain-dependent and specific antibiotic resistance have also been observed in *Acinetobacter* species (Glover *et al.* 2022). Different resistance patterns of *Acinetobacter* sp. have been isolated from very close geographic areas (Neela *et al.* 2015). This implies that this bacterium has demonstrated exceptional resistance patterns to a wide range of drugs.

Fig. 2. Multidrug-resistant *Acinetobacter calcoaceticus* BOTRUML127 strain. MEM: Meropenem, AM: Ampicillin, K: Kanamycin, E: Erythromycin, CL: Colistin, AML: Amoxicillin, CN: Gentamicin, AZM: Azithromycin, OT: Oxytetracycline and CIP: Ciprofloxacin. C: Negative control.



Fig. 3. Representing the morphological characteristics of *A. calcoaceticus* BOTRUML127 strain.

The emergence of colistin resistance in rhizosphere soil in this study could be due to the application of poultry litter and manure as organic fertilizer. Colistin is commonly used in Bangladesh in poultry farms and animal husbandry to prevent infection and as a growth promoter (Chowdhury *et al.* 2021). Considering the widespread and extensive use of antibiotics as pesticides in South Korea, it is noteworthy that *Acinetobacter* isolates from agricultural areas are

mainly resistant to colistin, chloramphenicol, and especially streptomycin (Son *et al.* 2024). In terms of antibiotic resistance, this result implies that environmental strains of *A. calcoaceticus* respond to antibiotics in the same way as clinical strains of *A. calcoaceticus*. Colistin resistance of *A. calcoaceticus* in the agroecosystem can be transmitted to humans via agricultural products, which is a human health concern because, according to Oliveira *et al.* (2019), colistin is currently considered the antibiotic of last resort for the treatment of multidrug-resistant bacterial infections.

In this study, the antibiotic ciprofloxacin significantly reduced the growth of four multidrug-resistant *A. calcoaceticus* strains, consistent with the results of Stenstrom *et al.* (2016). Another study also found that among eight *Acinetobacter* spp. strains, all were susceptible to ciprofloxacin (Sun *et al.* 2014). These data suggest that fluoroquinolone antibiotics may be a potential treatment for patients with *Acinetobacter* infections. To our knowledge, this is the only study specifically examining antibiotic resistance of *A. calcoaceticus* strains from soil in Bangladesh.

This study reported the isolation and identification of MDR environmental *A. calcoaceticus* strains from rhizosphere soil. Their multidrug-resistant nature indicates severe disease if these isolates can be transmitted from soil to hospital. Further studies are needed to identify the antibiotic resistance gene(s) and the pathogenicity of environmental strains with hospital isolates.

Acknowledgments

The study was funded by “5th Phase BAS-USDA MPA-16”, Bangladesh Academy of Science. The authors are also grateful to Dr. Todd W. Miller (US National Oceanic and Atmospheric Administration) for his thorough review the manuscript.

References

Al Atrouni A, Joly-Guillou ML, Hamze M and Kempf M 2016. Reservoirs of Non-*baumannii* *Acinetobacter* species. *Front. Microbiol.* **7**: 49.

Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B and Bartlett J 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. *Clin. Infect. Dis.* **48**(1): 1-12.

Campos A, Lopes MS, Carvalheira A, Barbosa J and Teixeira P 2019. Survival of clinical and food *Acinetobacter* spp. isolates exposed to different stress conditions. *Food Microbiol.* **77**: 202-207.

Carvalheira A, Silva J and Teixeira P 2017. Lettuce and fruits as a source of multidrug resistant *Acinetobacter* spp. *Food Microbiol.* **64**: 119-125.

Chowdhury S, Ghosh S, Aleem MA, Parveen S, Islam MA, Rashid MM, Akhtar Z and Chowdhury F 2021. Antibiotic usage and resistance in food animal production: what have we learned from Bangladesh? *Antibiotics* **10**(9): 1032.

Clinical and Laboratory Standards Institute (CLSI) 2020. Performance standards for antimicrobial susceptibility testing; Clinical and Laboratory Standards Institute: Wayne, PA.

Doughari HJ, Ndakidemi PA, Human IS and Benade S 2011. The ecology, biology and pathogenesis of *Acinetobacter* spp.: an overview. *Microbes Environ.* **26**(2): 101-112.

Espinal P, Martí S and Vila J 2012. Effect of biofilm formation on the survival of *Acinetobacter baumannii* on dry surfaces. *J. Hosp. Infect.* **80**(1): 56-60.

Ghoreishi F and Etemadifar Z 2017. Heavy metal removal by phosphate solubilizing *Acinetobacter calcoaceticus* isolated from rhizosphere. *J. Biol. Today's World* **6**(11): 230-239.

Glover JS, Ticer TD and Engevik MA 2022. Profiling antibiotic resistance in *Acinetobacter calcoaceticus*. *Antibiotics* **11**(7): 978.

Ho MT, Li MSM, McDowell T, MacDonald J and Yuan ZC 2020. Characterization and genomic analysis of a diesel-degrading bacterium, *Acinetobacter calcoaceticus* CA16, isolated from Canadian soil. *BMC Biotechnol.* **20**(1): 39.

Hossain GMA, Solaiman ARM, Karim AJMS, Rahman GKMM, Baset MA, Rahman MM and Dev S 2020. Characterization of diazotrophs isolated from sugarcane rhizosphere in different regions of Bangladesh. *Int. J. Curr. Microbiol. Appl. Sci.* **9**(3): 2643-2655.

Khatun MN, Farzana R, Lopes BS and Shamsuzzaman SM 2016. Molecular characterization and resistance profile of nosocomial *Acinetobacter baumannii* in intensive care unit of tertiary care hospital in Bangladesh. *Bangladesh Med. Res. Counc. Bull.* **41**(2): 101-107.

Maravić A, Skočibušić M, Fredotović Ž, Šamanić I, Cvjetan S, Knežović M and Puizina J 2016. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important *Acinetobacter* spp. *Environ. Sci. Pollut. Res.* **23**(4): 3525-3535.

Neela FA, Banu MNA, Rahman MA, Rahman MH and Alam MF 2015. Occurrence of antibiotic resistant bacteria in pond water associated with integrated poultry-fish farming in Bangladesh. *Sains Malays.* **44**(3): 371-377.

Neela FA, Lisa N and Satoru S 2007. The diversity of multi-drug resistance profiles in tetracycline-resistant *Vibrio* species isolated from coastal sediments and seawater. *J. Microbiol.* **45**(1): 64-68.

Oliveira CC, Lopes ES, Barbosa DR, Pimenta RL, Sobrinho NMBA, Coelho SMO, Souza MMS and Coelho IS 2019. Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation. *Eur. J. Soil. Sci.* **70**(4):876-881.

Son SM, Ahn E, Ahn S, Cho S and Ryu S 2024. Prevalence of antibiotic-resistant *Acinetobacter* spp. on soil and crops collected from agricultural fields in South Korea. *Food Sci. Biotechnol.* **33**: 1931-1937.

Stenstrom TA, Okoh AI and Adegoke AA 2016. Antibiogram of environmental isolates of *Acinetobacter calcoaceticus* from Nkonkobe Municipality, South Africa. *Fresenius Environ. Bull.* **25**(8): 3059-3065.

Sun Y, Liu Q, Chen S, Song Y, Liu J, Guo X, Zhu L, Ji X, Xu L and Zhou W 2014. Characterization and plasmid elimination of NDM-1-producing *Acinetobacter calcoaceticus* from China. *PLoS One* **9**(9): e106555.

Suresh S, Aditya V, Kumar V, Radhakrishna D and Ramya M 2022. A rare occurrence of multidrug-resistant environmental *Acinetobacter baumannii* strains from the soil of Mangaluru, India. *Arch. Microbiol.* **204**(7): 1-5.

Uniyal S, Paliwal R, Verma M, Sharma RK and Rai JPN 2016. Isolation and characterization of fipronil degrading *Acinetobacter calcoaceticus* and *Acinetobacter oleivorans* from rhizospheric zone of *Zea mays*. *Bull. Environ. Contam. Toxicol.* **96**: 833-838.

Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonso LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G and Álvarez-Hernández DA 2020. *Acinetobacter baumannii* resistance: a real challenge for clinicians. *Antibiotics* **9**(4): 205.

Weinstein RA, Gaynes R, Edwards JR and System NNIS 2005. Overview of nosocomial infections caused by gram-negative bacilli. *Clin. Infect. Dis.* **41**(6): 848-854.

Zeana C, Larson E, Sahni J, Bayuga SJ, Wu F and Della-Latta P 2003. The epidemiology of multidrug-resistant *Acinetobacter baumannii* does the community represent a reservoir? *Infect. Control Hosp. Epidemiol.* **24**(4): 275-279.

(Manuscript received on 10 July, 2025; revised on 30 August, 2025)