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Abstract 
 Wine grape cannot grow well in cold areas. The cold resistance abilities of grape have become a very 
important problem to be solved. Effects of different fruit loads on the physiological and biochemical indexes 
of wine grape cultivar were studied through experiments. Results showed that different fruit loads had 
significant effects on the conductivity, soluble sugar content, Malondialdehyde (MDA), superoxide dismutase 
(SOD), peroxidase (POD) and catalase (CAT) of grape branches. Factor analysis and principal component 
analysis were used to analyze the physiological and biochemical indexes of cold resistance of wine grapes 
with different loads. Results showed that combined with the physical microstructure, physiological and 
biochemical data of branches, the best fruit load of wine grape was 5 kg in eastern foot of Helan Mountain, 
China.  
 
Introduction 
 China is one of the origins of Grape vines (Vitis vinifera L.) belonging to the vitaceae. This 
plant is the second largest planted fruit in China. After China's Reform and Opening Up, the grape 
industry has developed rapidly, forming wine grape producing areas mainly in the north (Li 2009). 
Like other grape growing areas (Cragin et al. 2017, Antivilo et al. 2018, Kaya 2020), 
environmental stress is one of the limiting factors for the development of grape industry in China 
(Guo and Luo 2010). In particular, overwintering freezing damage has caused long-term low and 
unstable wine grape production in China (Sun et al. 2015, Wang et al. 2015). Therefore, it is 
necessary to solve the problem of wine grapes overwintering freezing damage.  
 Though there are many researches on the winter damage of wine grapes, they mainly focus on 
the causes of freezing damage, defense technology and cold resistance (Zulini 2010, Li et al. 2016, 
Todaro and Dami 2017). The wide range and frequent occurrence of overwintering freezing 
damage in northern China are still unexpected, which is closely related to the lack of 
understanding of the formation mechanism of wine grape wintering freezing damage and the lack 
of corresponding research support. At present, the formation process of overwintering freezing 
injury of wine grape is clearly understood, and the research on the formation mechanism of 
freezing injury is also more (Karimi and Ershadi 2015, Antivilo et al. 2019). However, the 
research on the effect of fruit loads on cold resistance of wine grapes has not been carried out in 
depth. Therefore, the present study was aimed to determine the best fruit loads capacity, defence 
technology of overwintering freezing injury, and this study has important significance for targeted 
research on wine grape overwintering. 
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Materials and Methods 
 The site was selected at the east foot of Helan Mountain (37°43′~39°23′ north latitude and 
105°45′~106°47′ east longitude) in Ningxia Hui Autonomous Region. The field experiments and 
sampling locations of this study are mainly located in the vineyard of Mehe Manor in the eastern 
foot of Helan Mountain in Ningxia and the Yuxiaying Xixia Wangyuquan International Winery in 
Yuquanying, Yongning County, and Yinchuan City. 
 Cabernet sauvgnon grape was used as the wine grape sample. In May 2019, three rows of 
vines with similar growth and uniform age were selected. Four consecutive pole distances were 
selected as the test area. There were 10 vines in each pole distance. The vines are designed with 
different load treatments, specifically 3 kg (A1 treatment), 4 kg (A2 treatment), 5 kg (A3 treatment) 
and non-thinning control (CK treatment, 6 kg). There were 3 replicates test areas for each 
treatment. Annual branches were collected in the repeated plots before removing the grapevines 
from the shelves. Ten branches were collected in each treatment and were repeated for three times. 
The thickness is required to be between 0.5 and 1cm, and the 8 to 15 sections were selected as test 
materials.  
 In the laboratory, the test branches were treated with high and low temperature alternating test 
box (model: BC1300), the treatment temperature of the branches were -10, -15, -20, -25 and -
300C. The cooling range during freezing and the heating range during thawing were both 5℃/hr. 
After 2 hrs restoration at room temperature, some parts were taken out and immediately tested for 
relative conductivity. All indexes were measured 3 times. 
 The logistic equation ݕ = ݇/(1 + ܽ݁ି௕௫) was used to fit the relationship between the low 
temperature stress and the relative conductivity of the branches. In the equation, y is the low 
temperature semi-lethal temperature (LT50) and x is the relative conductivity. 
 The soluble sugar content of the test branches was determined using a kit of plant soluble 
sugar content produced by Shanghai Jianglai Biotechnology Co., Ltd. The four indicators contents 
(Malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of 
the test branches were determined using the enzyme-linked immunoassay (ELISA) kit produced 
by Shanghai Jianglai Biotechnology Co., Ltd.  
 Data analysis and charts were performed with Excel 2019 and SPSS 20.0, the LT50 was 
calculated with DPS 9.05, relevant data of paraffin sections were observed and counted with Case 
Viewer 2.0, and significance test was performed with Duncan-style new double range test method. 
 
Results and Discussion 
 In the early stage of the experimental design, each plot was treated with an estimated output 
of 0.5 kg as a spike of grapes, and the production was picked on September 26, 2019. The 
difference between the actual grape yield and the estimated yield in each area is within the range 
of ±10%, which meets the test demand. 
 It can be seen from Fig. 1 that during the cooling process of 4~-30℃, the relative conductivity 
of each treated branch showed an overall upward trend, and was approximately distributed in an 
“S” curve. Throughout the cooling process, the relative conductivity of each treatment increased 
differently. 
 As shown in Table 1, the correlation coefficient r of each logistic equation is greater than 
0.900, all reaching a significant level (p < 0.05). According to the LT50 results, it can be 
preliminarily concluded that under different loads, the cold resistance of the total fruit loading of 3 
kg is significantly weaker than other treatments. 
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Fig. 1. Changes in relative conductivity of wine grape branches with different loads. CK, 

control group (6 kg load treatment); A1, 3 kg load treatment; A2, 4 kg load treatment; A3, 
5 kg load treatment, the same as follows. 

 
Table 1. Logistic equation of relative conductivity and LT50. 
 

deal with Regression equation decisive factor（r2） LT50 (℃) 

A1 Y=61.25/(1+95.62e-6.42x) 0.9035 -14.90 
A2 Y=123.25/(1+3.94e-0.15x) 0.9531 -26.62 
A3 Y=105.95/(1+5.72e-0.22x) 0.9768 -26.00 
CK Y=203.88/(1+6.64e-0.25x) 0.9023 -26.23 

 
 The soluble sugar content of grape branches under different treatments is shown in Fig. 2. 
During the temperature reduction of 4~-30℃, the soluble sugar content of the grape branches in 
each treatment showed a trend of slightly decreasing and then increasing and then decreasing, but 
the temperature at which the peak appeared was different. There was a significant difference in the 
soluble sugar content of the various treatments throughout the cooling process. Only at -25℃ there 
was no significant difference between the A1 treatment and the A2 treatment. It can be seen that 
there is a more obvious relationship between the load and the increase in soluble sugar. With the 
increase in load, the increase in soluble sugar gradually increases.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Changes in soluble sugar content of wine grape branches with different loads. 
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 During the temperature reduction of 4~-30℃, the MDA content of grape branches in each 
treatment showed a trend of first increasing and then decreasing (Fig. 3.). The changes in the early 
stage were stable, and the growth rate accelerated in the range of -15 to -20℃. After -20℃, there 
were different degrees of decline for the grape branches of different loads. In the whole cooling 
process, there is basically a significant difference in the MDA content of each treatment. It can be 
seen that the greater the amount of change in the MDA content during the whole freezing process, 
the greater the increase, and the greater the load of the grape branches, the greater the maximum 
MDA content reached. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Changes in MDA content of wine grape branches with different loads. 
 

 The SOD activity of grape branches under different treatments is shown in Fig. 4. During the 
temperature reduction of 4~ -30℃, the SOD activity of the grape branches in each treatment 
showed a trend of first increasing and then decreasing. The changes in the early stage were stable, 
and the growth rate accelerated in the range of -20℃ to -25℃, and then declined to varying 
degrees. The maximum increase in SOD activity was A3 treatment. 
 

 
 

  
 

 

Fig. 4. Changes in SOD, POD, CAT activity of wine grape branches with different loads. 
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 The POD activity of each treatment of grape branches generally showed a trend of increasing 
first and then decreasing (Fig. 4.). Among them, the A1, A2 and A3 treatments reached the peak at 
-15℃ treatment while the CK treatment reached the peak at -10℃. The maximum increase in the 
POD activity was at A3 treatment, followed by For A2 treatment. 
 The CAT activity of grape branches in each treatment changed relatively slowly within the 
range of 4~-15℃ (Fig. 4.). The activity increased rapidly between -15~-20℃, and then the growth 
rate slowed down. The four treatments all peaked at -30℃. The largest increase in CAT activity 
was at A1 treatment, the smallest at A2 processing. 
 The change rate α (equation (1)) between the maximum value reached by each index in the 
whole temperature-reducing process and its control value is taken as the original data of 
comprehensive evaluation. 
 Rate of change ߙ = （ ௜ܺ௠௔௫ −  ௜              (1)ܭܥ/（௜ܭܥ
 Among them, ௜ܺ௠௔௫  is the maximum value of the index ݅ in the whole cooling process, and 
௜ܭܥ  is the measured value of the CK of the index ݅  without freezing. The result of factor 
contribution rate calculated by SPSS is shown in Table 2. The first two principal components are 
selected as effective principal components according to the principle of extracting the number of 
principal components. The first two principal components can contain 88.218% of the information 
in the data used, which is representative and can be analyzed further. 
 

Table 2. Explanation of variance of principal component analysis. 
 

main 
ingredient 

Initial eigenvalue 
Eigenvalues Variance contribution rate Cumulative variance contribution rate 

1 4.794 68.482 68.462 
2 1.381 19.736 88.218 
3 0.825 11.782 100 

 

 The main component load table calculated by SPSS is shown in Table 3. From the table, we 
can see that the main component 1 mainly carries the information of relative conductivity, MDA 
content, SOD activity, POD activity and CAT activity, and the main component 2 mainly carries 
the information of LT50. 
 

Table 3. Principal factor load table. 
 

Physiological and biochemical indicators main ingredient 1 main ingredient 2 
Relative conductivity -0.924 -0.367 
Soluble sugar content 0.672 -0.277 
LT50 0.336 0.931 
MDA content 0.908 0.009 
SOD activity 0.986 -0.052 
POD activity -0.834 0.547 
CAT activity 0.940 0.035 
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 According to the component matrix obtained by factor analysis, the eigenvector matrix is 
calculated, and the two principal components extracted can be expressed as a linear combination 
of each variable, and the score function of the two principal components (equation (2) and 
equation (3) can be obtained. In the formula, X1~X7 respectively represent relative conductivity, 
soluble sugar content, LT50, MDA content, SOD activity, POD activity and CAT activity. 
 After normalizing all variables, the values of the two principal components corresponding to 
each harvest period, that is, the scores of F1 and F2, can be calculated, and the respective variance 
contribution rates of the two principal components are used as weights for the F1 and F2. The 
scores are weighted, and the comprehensive score equation F (Equation (4)) of each treatment is 
obtained, and the overall cold resistance of the wine grape branches with different loads is ranked 
according to the size of the F value. The higher the overall score, the higher the ranking, which 
means that the load resistance of the grape branches is better. The comprehensive score is greater 
than 0, indicating that the overall cold resistance of the grape branches under the load is above the 
average level, otherwise it is below the average level. 
 

 F1=0.422X1+0.307X2+0.153X3+0.415X4+0.450X5-0.381X6+0.429X7        (2) 
 F2=-0.312X1-0.236X2+0.792X3+0.008X4-0.044X5+0.465X6+0.030X7        (3) 
 F=(68.482F1+19.736 F2)/100                      (4) 
 

 The comprehensive score ranking of the cold resistance of wine grape branches with different 
loads is shown in Table 4. A3 treated principal component 1 scored the highest at 1.775. The cold 
resistance of grape branches with different loadings was ranked as 5 kg total fruit> 3 kg total 
fruit> 6 kg total fruit (CK) > 4 kg total fruit. 
 

Table 4. Comprehensive scores of cold resistance of wine grape branches with different loads. 
 

deal with F1 F2 F Rank 
A1 0.162 1.668 0.440 2 
A2 -1.750 -0.023 -1.203 4 
A3 1.775 -0.871 1.044 1 
CK -0.188 -0.774 -0.281 3 

 

 Comprehensive physical microstructure and physiology and biochemistry data of branches 
were observed. The comprehensive score of physiology and biochemistry is similar to the result of 
the proportion of xylem, which means that the growth of the branches is the best under the 
appropriate amount of fruit, so the resistance Cold ability is also the strongest. If the load is too 
much, the branches will not get enough nutrients, and the growth degree is not enough to resist the 
low temperature stress; if the load is too little, the branches will get too many nutrients, and the 
growth amount is too large, and more osmotic adjustment is required during low temperature 
stress substances and protective enzymes to resist low temperature, and the rate of production of 
synthetic substances has an upper limit, it is impossible to fully meet the needs of the branches, so 
it is not conducive to resistance to low temperatures. Combined with the above analysis, it can be 
concluded that the branch has the best cold resistance when the fruit is 5 kg, so it can be 
determined that the optimal amount of fruit is 5 kg. 
 In the wine grape cultivation technology, the regulation of the load is important. It can not 
only regulate the quality of the grape fruit, but also affect the resistance of the grape itself. The 
load can regulate the degree of vegetative growth of the tree, and can also regulate the degree of 
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reproductive growth (Liu et al. 2015, Chen 2016), only the appropriate load can achieve the 
purpose of the best wine grape quality and the best wine quality (Shi et al. 2016, Zhang 2016).  
 At present, most of the researches on the fruit load has focused on the effects on fruit quality 
(Zhang 2013, Man et al. 2011) and fruit disease resistance (Yu et al. 2010, Wen 2016), and few 
articles related to the resistance of trees. In this study, the growth of the branch is the best in the 
right amount of fruit hanging, so the cold resistance is also the strongest. If the load is too much, 
the branches cannot get enough nutrition and the growth degree is not enough to resist the stress of 
low temperature. Under low temperature stress, more osmotic adjustment substances and 
protective enzymes are needed to resist low temperature, and the rate of production of synthetic 
substances has an upper limit, which cannot fully meet the needs of branches, so it is not 
conducive to resist low temperature. The results of this study showed that the electrical 
conductivity, enzyme content and other physical and chemical properties of branches could reach a 
more appropriate level under the condition of appropriate fruit setting. Combined with the above 
analysis, it can be concluded that the cold resistance of branches of Cabernet Sauvignon is the best 
when the fruit bearing capacity is 5 kg. 
 Shi et al (2015a) found that the branches with the most fruit grape varieties with a slight fruit 
ratio of 1:1 in western Liaoning had the strongest cold resistance capacity. Some scholars have 
also found that in the eastern foothills production area of Helan, the semi-lethal temperature of the 
branches was the lowest when the plant load of the Cabernet Sauvignon variety was 10 ears in the 
irrigated silt planting area (Shi et al. 2015b), and when the plant load of the Cabernet Sauvignon 
variety was 15 ears in the gravel sand soil planting areas. The semi-lethal temperature of the 
branches is the lowest. The above results are consistent with the conclusions of this study. 
 The research showed that in the cooling process, the relative conductivity of different load 
wine grape branches showed an upward trend. Overall, the more the fruit load, the higher the 
semi-lethal temperature of grape branches. The soluble sugar content of wine grape branches with 
different loading showed a trend of slightly decreased at first, then increased and then decreased. 
The MDA content of different load wine grape branches showed a trend of first increased and then 
decreased. In the cooling process, the three kinds of anti-adversity enzymes through the 
synergistic effect together against low temperature stress, different load wine grape branches of 
anti-adversity enzyme activity were significantly improved. 
 The results of factor analysis and principal component analysis showed that the cold 
resistance of grape branches with different loads was in the order of total fruit 5 kg > total fruit 3 
kg > total fruit 6 kg (CK) > total fruit 4 kg. Based on the physiological and biochemical data, it 
can be concluded that the cold resistance of branches is the best when the fruit load is 5 kg, so the 
best fruit load of wine grapes in the eastern foot of Helan Mountain is 5 kg. 
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