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Abstract 
 In order to investigate the change process of some physiological indices in response to four temperature 
levels (3, 0, ‒3 and ‒6°C), 110 Citrus accessions consisting of 76 unknown natural biotypes and 34 known 
genotypes were studied using the split-plot design with three replications. Two genotypes Poncirus and 
Mexican lime (as cold tolerant and cold susceptible, respectively) were used as control genotypes. Electrolyte 
leakage, leaf water soaking, and lipid peroxidation had increasing trends with the decrease of temperature. On 
the other hand, for tolerance criteria (antioxidant capacity, proline content, total carbohydrates, and 
enzymatic activities) sigmoidal trends were recorded. For electrolyte leakage and leaf water soaking, 
Poncirus, Satsuma mandarin, and the unknown biotype G8 had the smallest range of mean variation at four 
stress temperatures. Also, for lipid peroxidation, Siavaraz 1, Satsuma mandarin, and sour orange had the 
lowest range of change. Proline content evaluation showed that Satsuma mandarin and two natural biotypes-
Moallemkoh and Siavaraz 2-experienced the highest changes in proline accumulation.  
 

Introduction 
 Since most citrus cultivation areas may have a lower temperature in winter than optimum 
production conditions, low-temperature stress is frequently one of the environmental limiting 
factors in the cultivation and production of this evergreen subtropical plant (Tajvar et al. 2011). In 
a study conducted on the effects of cold stress (CS) on Satsuma mandarin, it was reported that 
with a decrease in temperature, the rate of electrolyte leakage increased (Nesbitt et al. 2002). 
Based on the researches done, CS was found to cause increased enzymatic activity in mandarin 
cultivars (Sala and Lafuente 1999). It has also been reported that various sour orange cultivars 
have more antioxidant enzymatic activities (Lindhout 2007). 
 Ramsar Citrus Germplasm Collection is the most important source of citrus germplasm in 
Iran. Many accessions in this collection are natural biotypes that have shown different responses to 
CS in recent years. Therefore, the present study was designed and conducted in order to 
understand the physiological responses of different genotypes to different levels of CS, as well as 
the change process of the values of traits.  
 

Materials and Methods 
 The present research was carried out performed in a split-plot design with three replications. 
Low- temperature stress, with an assessment of eight cold tolerance (CT) - related traits, was 
evaluated at four temperature levels viz. 3, 0, ‒3 and ‒6°C as main factors and 110 genotypes 
(Table 1) as sub-factor levels. For this purpose, one-year-old branches containing leaf at a length 
of 30 cm  were  collected   from 110 different  accessions  from  Iran  Citrus  and Subtropical  Fruit 
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Research Center (lat. 36° 54′ 26′′N, long. 50° 39′ 24′′ E, alt. -3 m). The selected branches were 
placed within the thermo-gradient freezer (Pars-Model) under low-temperature treatment. The 
samples were incubated for eight hours at each treatment temperature before the trait 
measurements with the temperature decrement setting as 1°C/hr. Electrolyte leakage (EL) and leaf 
water soaking (WS) evaluation were performed using the methods described by Mollá et al. 
(2006) and Wongsheree et al. (2009), respectively. The concentration of malondialdehyde (MDA) 
as amount of lipid peroxidation (LP) was identified according to Siboza et al. (2014). In order to 
determine total soluble carbohydrates (TC), the process described by Dubois et al. (1956) was 
employed. Antioxidant capacity (AC) was assayed according to Siboza et al. (2014). In addition, 
proline content (PC) was estimated by the method introduced by Bates et al. (1973). Superoxide 
dismutase activity (SOD) was determined using the method recommended by Wu et al. (2006). 
Moreover, ascorbate peroxidase activity (APX) was evaluated based on Rivas et al. (2008) 
recommended method. Statistical values were estimated for each trait using SAS v. 9.1.3.  
 
Results and Discussion 
 The traits evaluated indicated that there was wide range of reaction to CS (Table 2). The 
results indicated that the highest coefficient of variation (CV) was recorded for EL at ‒3°C (40%). 
 The variance analysis results obtained by using the split-plot design for the eight examined 
traits are presented in Table 3. Differences between genotypes were significant in all the studied 
traits and indicated that there was a high genetic diversity within the studied accessions, which 
largely confirmed the primary assumptions of the present study. The interaction effect of 
temperature × genotype, which was statistically significant at 0.01 level for all the evaluated traits 
except APX, indicated a high diversity among genotypes in terms of response to CS. Based on the 
statistical aspects and significant interactions, it was necessary to perform the cutting operation. 
Therefore, the statistical analyses were done at each temperature separately. 
 To evaluate the effect of CS on the measured traits, the average variation of genotypes was 
calculated for each trait (Fig. 1). According to the results, with an increase in stress intensity, only 
the traits change of cell degradation index had an enhancing trend. The similarity of change trend 
in these three traits confirmed that with an increase in CS and ROS the production cell membrane 
destruction enhanced as well. In the present study, the maximum accumulation of 
malondialdehyde as a result of oxidative stress on lipids peroxidation was recorded at ‒6°C. The 
maximum increase of AC at ‒3°C by the revival of the free radicals can be effective in inducing 
cold acclimation and tolerance in stressed plants. After that, with an increase in stress intensity at 
‒6°C, a decrease in AC was observed. For TC and SOD activity, the highest value was observed at 
0°C (Fig. 1). For EL, Poncirus (G103), Satsuma mandarin (G96) genotypes and the unknown 
biotypes G8 showed the least change in comparison (Fig. 2) with the initial stress temperature 
(8.53, 9.24 and 9.83%, respectively). In contrast, the Mexican lime genotype (G109) and the two 
unknown biotypes G48 and G16 had the highest change rate relative to -3°C (42.44, 40.36 and 
39.29%, respectively). In fact, high EL levels indicated the inability of the membrane to retain 
intracellular compounds, as well as loss of selective permeability, greater excretion of electrolytes 
from the cell, and damage to cell membrane. However, the lowest PC concentration was recorded 
for G67, G49 and G22 biotypes ( 8.53, 9.69 and 9.89 mg/g leaf fresh weight, respectively) (Fig. 
3). For AC, the highest amount of variation was recorded for Poncirus (G103) (39.23%). After 
that, Satsuma mandarin (G96) with 38.23% and Off type sour orange (G110) with 36.52% had the 
highest AC changes compared to the initial stress temperature. Pearson correlation coefficient was 
used to show  the  relationships  between  the traits, which  are presented in Table 4. Since CT  is a 
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Fig. 1. The trend of mean variation of studied traits at four stress temperatures. (a) EL= electrolyte leakage, (b) WS 

= water soaking, (c) PC = proline content, (d) MAD = malondialdehyde concentration, (e) AC = antioxidant 
capacity, (f) TC = total carbohydrates, (g) SOD = superoxide dismutase activity, (h) APX = ascorbate 
peroxidase activity. 



THE CHANGE TREND IN PHYSIOLOGICAL TRAITS OF 110 CITRUS 381 

 
Fig. 2. The variation amplitude values of 110 citrus genotypes relative to the initial temperature of stress (3° C) for 

the three traits of cell degradation index. (a) Electrolyte leakage, (b) Leaf water soaking, and (c) 
Malondialdehyde concentration. 
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Fig. 3. The variation amplitude values of 110 citrus genotypes relative to the initial temperature (3° C) for the traits 

associated with induction of cold tolerance. (a) Proline content, (b) Antioxidant capacity, (c) Total soluble 
carbohydrates, (d) Superoxide dismutase activity, and (e) Ascorbate peroxidase activity. 
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quantitative trait, it was expected to record different correlation values between the traits. In the 
present study, the highest positive significant correlation (very strong)was observed between EL 
and WS at the level of 0.01 (r = 0.91).  
 All the traits that were involved in CT induction had a sigmoidal response to different CS 
levels. This kind of sigmoid trend caused by an increase in CS intensity was reported earlier in 
other studies (Tajvar et al. 2011) and is justifiable. It can be said that an increase in ROS, in 
competition with oxidative inhibitors of these free radicals, leads to the degradation of 
macromolecules such as proteins and nucleic acid. As a result, the biosynthetic pathway of many 
active enzymatic and non-enzymatic metabolites was affected in resistance induction to stress, and 
an irreversible damage was imposed on the cell. Consequently, on the nature of the plant’s 
genotype (susceptible or tolerant), the continuity of this stress will be accompanied by further 
degradation of cellular organelles and inactivation of CT molecular mechanisms. 
 

Table 4. Correlations coefficients between eight traits related to cold tolerance used in present study. 
 

Trait EL WS PC MDA AC TC SOD APX 
Electrolyte leakage (EL) 1        
Water soaking (WS) 0.91** 1       
Proline content (PC) 0.42** 0.45** 1      
Malondialdehyde conc. (MDA) 0.35** 0.59** 0.34** 1     
Antioxidant capacity (AC) 0.29** -0.28 0.85** 0.18** 1    
Total Carbohydrates (TC) -0.35* -0.30 0.24** -0.04 0.32** 1   
Superoxide dismutase (SOD) 0.33* -0.20 0.08** 0.20* 0.12* 0.74** 1  
Ascorbate peroxidase (APX) 0.29* -0.44** 0.84** 0.56* 0.74** 0.26** 0.18** 1 

**Significant at 0.01 level, *Significant at 0.05 level. 
 

 In the present investigation, an increase in PC confirmed the previous studies that PC can be 
used as one of the tolerant indices in the selection of tolerate genotypes (Rai and Penna 2013). As 
one of the most compatible compositions, it can actually play an antioxidant role through reviving 
free radicals, in addition to decreasing osmotic potential (Ashraf et al. 2007). Regarding the 
maximum amount of EL and WS at ‒6°C due to the decomposition of unsaturated fatty acids, 
similar results were observed for LP. However, the remaining metabolites from different defense 
mechanisms in more tolerant genotypes, including antioxidant defense systems (despite the 
decrease in activity at ‒6°C), caused a moderate delay in cell membrane degradation. In some 
plants, at temperatures above 0°C, EL levels are not affected. One of the strategies that many 
plants take to survive under low-temperature stress conditions is using antioxidant compounds 
(enzymatic or non-enzymatic) (Wu et al. 2010). Having considered a decrease in AC and an 
increase in stress intensity from ‒3°C to ‒6°C, it can be deduced that by increasing ROS density, 
these radicals appeared beyond the role of a signal, act as a destructive factor and reduce the 
efficiency of plant defense mechanisms. This sigmoidal trend is similar to the results reported by 
Tajvar et al. (2011). Due to the contribution of tolerant genotypes rather than sensitive genotypes 
to the population tested, different results from the average of different traits values at various 
stress temperatures were expected. During temperature decrease, APX enzyme activity increased 
to prevent damage to the plant and maintain homeostasis. Due to the lack of increase in APX 
enzyme activity at temperatures below ‒3°C and the main role of this enzyme in controlling 
hydrogen peroxide, it can be said that the hydrogen peroxide decomposition peak was at ‒3°C. 
The sharp decrease in metabolic activity at temperatures below ‒3°C caused less hydrogen 
peroxide formation. As a result, there was no need to increase APX enzyme (Yong et al. 2008). 
Moreover, in many genotypes, it is not possible to continue enzymatic activity for their 
accumulation. Of course, it should be noted that due to the presence of soluble materials in the 
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cell, the freezing point or physiological zero of the plant (depending on the genotype) may reduce 
to ‒3°C, and naturally, physiological processes may continue to reach this temperature (Tarkowski 
and Van den Ende 2015). In contrast, membrane degradation, as well as EL and WS, are physical 
processes and parallel to a further fall in temperature, the amount of freezing and membrane 
destruction would increase.  
 The intensity of change in response to stress in various genotypes was different (Figs 2 and 3). 
It is possible to justify the big difference of TC concentration between tolerant and sensitive 
accessions by saying that in tolerant genotypes, an increase in the density of sugars under low-
temperature stress conditions was because of the enhancing process of converting starch into 
soluble sugars or reducing their consumption due to the reduction in metabolic processes 
(Tarkowski and Van den Ende 2015). Conversely, in sensitive accessions, a reduction in TC under 
stressful temperature can be due to the use of sugars in the synthesis of some metabolites such as 
proline in the leaves. It may be concluded that changes in carbohydrates concentration are very 
important in inducing tolerance mechanisms because these compounds directly affect important 
physiological reactions such as photosynthesis and respiration. The results showed that, relative to 
the initial stress temperature, the studied genotypes had a relatively low diversity in terms of the 
range of SOD enzyme changes (Fig. 3). Accordingly, citron genotype (G76) and G69 biotype, 
with the estimated 15.20 and 14.77 units of enzyme per gram of leaf fresh weight respectively, had 
the highest range of enzymatic activity change. The lowest enzyme changes were recorded for 
G28 and G4 genotypes. In justifying the positive significant correlation between EL,WS and LP, it 
could be noted that free radicals in the cell caused damage to the lipids and fatty acids of cell 
membrane and, by expediting the LP process and malondialdehyde formation, created a 
physiological degradation of cell membrane. Therefore, further degradation of membrane lead to 
an increase in the leakage of cellular contents into an intercellular space. On the other hand, 
physical damage such as freezing and ice core formation could also affect leakage rate and WS, 
and the calculated correlation confirmed this interpretation.  
 Moreover, based on the positive significant correlation between APX and LP, it may be 
concluded that the production of more hydrogen peroxide  resulting from stress produces more 
malondialdehyde and, consequently, decreased membrane stability, which resulted in increased 
APX activity for decomposing hydrogen peroxide. Wang et al. (2009), in their study on the effect 
of abiotic stress on antioxidant enzymes activity, reported that CT genotypes had less hydrogen 
peroxide accumulation. In this regard, similar results were obtained from the process of increasing 
APX enzyme and reducing hydrogen peroxide in other plants (Guo et al. 2006). It was found that 
the traits associated with CT had a compensatory effect on each other and, by decreasing the 
efficiency of a system, other defense mechanisms acted considerably to reduce the amount of cell 
damage. However, with an increase in cellular degradation, the plant cannot inhibit free radicals 
and eliminate them, and as a result, the effectiveness of CT induction mechanisms is reduced (Gill 
and Tuteja 2010). It was observed that among the genotypes, Poncirus, Satsuma mandarin, and 
various sour orange genotypes showed the highest CT, so the efficiency of these genotypes in 
breeding programs was confirmed. It was also determined that some unknown biotypes for one or 
more of the studied traits had a high breeding and selection value. On the other hand, the 
evaluations showed that the optimal values of all the resistance criteria were not the highest in 
known tolerant genotypes. For example, for SOD enzyme, citron genotype (G76) and the 
unknown biotype G69 showed the highest change in enzymatic activity. The most important 
indicator in the survival assessment of Citrus genotype in CS condition was EL, which, if 
increased by more than 50%, would indicate the death of the organ or tissue. It may be concluded 
that due to genetic structure and physiological factors, there was a significant difference between 
the reaction of different accessions against CS. Hence, some genotypes were prominent for at least 
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one associated trait with CT. Increasing the range of temperature changes, employing a variety of 
traits, evaluating growth stages, using different varieties and genotypes, and finally, exploiting 
molecular markers can lead to a better recognition of tolerant genotypes and their uses in breeding 
programs. 
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