POTASSIUM SOLUBILIZATION BY BACTERIAL STRAIN IN WASTE MICA

VS MEENA*, BR MAURYA AND INDRA BAHADUR

Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India

Keywords: K-solubilization; Muscovite; Biotite; Waste mica

Abstract

The release of K from waste mica (muscovite and biotite) was tested with 4 K-solubilizing isolates collected from maize rhizosphere, for 7, 14 and 21 days of incubation at $28 \pm 2^{\circ}$ C. K-solubilization by different bacterial isolates showed significant change on muscovite and biotite powder supplemented plates and the amount of K released varied from 1.28 - 46.75 µg/ml. The soluble K contents in all isolated treatments were significantly higher than control. Herein, isolate KSB₂ had higher K-solubilization ability when compared with other isolates (KSB₁, KSB₃ and KSB₄) *in vitro*.

Average soil reserves of K are generally large, but most of it is not plant-available. Therefore, crops need to be supplied with soluble K fertilizers, the demand of which is expected to increase significantly, particularly in developing regions of the world (Meena *et al.*, 2013). Recent investigations have shown that organic exudates of some bacteria play a key role in releasing otherwise unavailable K from K-bearing minerals (Zob *et al.*, 2013). K-solubilization could be attributed to excreting organic acids which either directly dissolves rock K or chelate silicon ions to bring K into solution (Prajapati *et al.* 2013). Therefore, in this study, K-solubilizers isolated from maize rhizosphere were tested for their solubilizing ability from muscovite and biotite minerals.

Waste mica a potassium-bearing mineral, obtained from the surroundings of mica mines located at Koderma district of Jharkhand, India. It is a by-product of mica industry (Table 1). Serially diluted samples were plated on Aleksandrov medium containing (per l) 5 g glucose, 0.005 g MgSO₄.7H₂O, 0.1 g Fe Cl₃, 2.0g Ca CO₃, 3.0 Mica as a potassium mineral (2.0 g in original media), 2.0 g calcium phosphate and 20 g agar-agar Aleksandrov media (Sugumaran and Janartham 2007) to isolate the potassium solubilizing bacteria.

At 7 DAI maximum K-solubilization from muscovite by KSB₂ with 2 and 1 mm particle size (5.68 and 6.38 μ g/ml, respectively) and this isolate was significantly at par with KSB₃. At 14 DAI maximum K-solubilizing capacity 15.05 and 28.50 μ g/ml (KSB₃) with 2 and 1 mm, respectively. This isolate was significantly superior to all others isolates. The lowest value measured in control. However, at 21 DAI maximum K-solubilizing capacity (17.28 and 39.50 μ g/ml with KSB₂) was recorded in the both particle size of mica (Fig. 1). Similar finding were also reported by Archana *et al.* (2013). KSB isolates produced organic acids that influenced mica and feldspar dissolution either by decreasing pH, forming frame work-destabilizing surface complexes, or by complexing metals in solution (Zhang *et al.* 2013). Maximum K-solubilization at 7, 14 and 21 DAI was observed with KSB₂. Similar inference was reported by (Archana *et al.* 2012). Solubilization generally increases with days of incubation, ranging from 1.28 to 46.75 μ g/ml at 21st day of incubation (Fig. 2) and was maximum in all the isolates. This may be due to strong acidic conditions resulting from the metabolic processes (Liu *et al.* 2006).

^{*}Author for correspondence: <vijayssac.bhu@gmail.com>.

Minerals	Si_2O_3	Fe ₂ O ₃	K	MgO	Na ₂ O	MnO	Р
Biotite	38.42	16.24	9.70	11.94	0.24	0.41	0.019
Muscovite	45.10	2.54	9.82	0.61	0.37	Traces	0.022

 Table 1. Elemental composition (%) of biotite and muscovite.

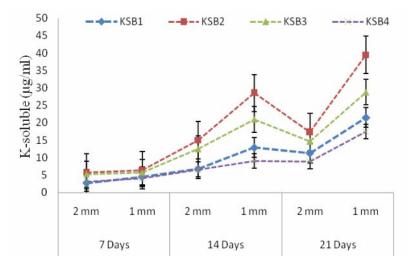


Fig. 1. Effect of inoculation periods and particle size of biotite on K-release by bacterial K-solubilizers.

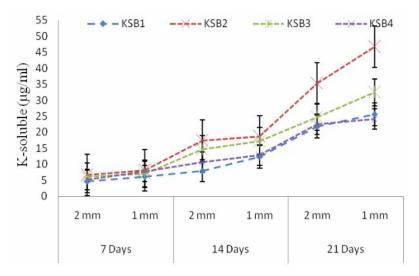


Fig. 2. Effect of inoculation periods and particle size of muscovite on K-release by bacterial K-solubilizers.

The results obtained from the current study concerning isolation, screening, and characterization of thirty isolates of KSB from Inceptisol revealed that KSB₂ can potentially enhance the dissolution of muscovite and biotite. Therefore, when used as K-biofertilizers, some

of the isolates might contribute to K supply of crops with a high K demand. Strain showed that higher potential of K-solubilization with biotite in comparison to muscovite and rapid release of K occurred from 1 mm size particle in comparison to 2 mm.

Acknowledgements

The authors are thankful to the Head, Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU Varanasi for providing necessary facilities to conduct this research work.

References

- Archana DS, Nandish MS, Savalagi VP and Alagawadi AR 2012. Screening of K-solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet. **9**(4): 627-630.
- Archana DS, Nandish MS, Savalagi VP and Alagawadi AR 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet. 10: 248-257.
- Liu W, Xu X, Wu S, Yang Q, Luo Y and Christie P 2006. Decomposition of silicate minerals by *Bacillus mucilaginosus* in liquid culture. Environ. Geochem. Health. **28**: 133-140.
- Meena VS, Maurya BR, Verma JP 2013. Does a rhizospheric microorganism enhance K⁺ availability in agricultural soils?. Microbiol. Res. Doi.org/10.1016/j.micres. 2013.09.003.
- Prajapati K, Sharma MC, Modi HA 2013. Growth promoting effect of potassium solubilizing microorganisms on *Abelmoscus esculantus*. Inter. J. Agri. Sci. **3**(1): 181-188.
- Sugumaran P and Janarthanam B 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agrl. Sci. **3**: 350-355.
- Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S, Zhu B 2013. Solubilization of insoluble potassium and phosphate by *Paenibacillus kribensis* CX-7: A soil microorganism with biological control potential. African J. Microbiol. Res. **7**: 41-47.
- Zorba C, Senbayramb M, Peiterc E 2013. Potassium in agriculture -Status and perspectives. J Plant Physio. http://dx.doi.org/10.1016/j.jplph.2013.08.008.

(Manuscript received on 10 September, 2013; revised on 23 December, 2013)