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Abstract 

 Effects of seed pretreatment by hydrogen peroxide (H2O2) on drought tolerance in common bean plants 
(Phaseolus vulgaris L.) were studied. Drought stress caused highly significant decrease in growth parameters, 
photosynthetic pigments, total carbohydrates and phytohormones. An increase drought stress caused highly 
significant increase in compatible solutes and polyamine contents as antioxidants and ABA contents in shoots 
of common bean plants. H2O2-pretreatment of seeds enhanced all the above parameters than the water-
pretreated seeds (control) under drought condition. Results suggested that H2O2, a stress signal could trigger 
the activation of antioxidants in seeds which persists in the plants to alleviate the oxidative damage leading to 
improvements in physiological attributes for the plants growth under drought. 

 
Introduction 
 Drought is a major abiotic stress that affects agricultural systems and food production and 
also induces several physiological, biochemical and molecular responses in several crop plants 
which give rise to excess concentrations of active oxygen species (AOS) resulting in oxidative 
damage at cellular level (Foyer and Noctor 2002). Drought inhibits the photosynthesis of plants 
causing changes of chlorophyll contents, damage the photosynthetic apparatus and decreases the 
activities of Calvin cycle enzymes (Monakhova and Chernyadev 2002). 
 Generally, the environmental stresses especially drought stress, give rise to accumulation of 
soluble carbohydrates, proline and free amino acids as well as antioxidants compounds. These 
solutes are low molecular weight, highly soluble compounds that are non toxic at high cellular 
concentration and protect cellular components from dehydration injury, thus are referred to as 
osmoprotectants and compatible solutes (Reddy et al. 2004, Shao et al. 2005). 
 Polyamines play an important role in maintaining membrane and nucleic acid integrity under 
most of the stress conditions (Erdei et al. 1996). However, both ionic deficiency and salinity, and 
osmotic stresses may influence polyamine metabolism in different manners and polyamines may 
have different and specific functions under these stress conditions (Zhou et al. 1995). 
 Water stress markedly reduced the amounts of auxins, gibberellins and cytokinin, while it 
reversibly raised the amounts of ABA (Abdalla and El-Khoshiban 2007). 
 Hydrogen peroxide is produced under various abiotic and biotic stresses. It is relatively stable 
and diffuses through membranes (Vranova et al. 2002), thus exogenous application of hydrogen 
peroxide at low concentrations  stimulated  and  enhanced  resistance  to drought  (He et al.  2009). 
H2O2 can serve as a second messenger in signal transduction pathways, leading to stress 
acclimation. Available information suggest that H2O2 directly regulates the expression of 
numerous genes involved in plant defense and the related pathways such as antioxidant enzymes, 
defense proteins and transcription factors (Hung et al. 2005).  
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 Common bean (Phaseolus vulgaris L., Fabaceae) is an important crop which is sensitive to 
water deficit when compared to other crops (Cruz et al. 1998). Therefore, it is important to 
elucidate drought tolerance mechanisms of this crop in order to improve its agronomic 
performances by exogenous application of hydrogen peroxide. Thus, this study aimed to explore 
the evaluation effects of hydrogen peroxide treatment for drought stress to better understanding of 
the physiological and biochemical mechanisms involved. 
 
Materials and Methods 
 Seeds of common bean plants (Phaseolus vulgaris L.) were obtained from the Agriculture 
Research Center, Ministry of Agriculture, Giza, Egypt.  Seeds were sterilized with 1% sodium 
hypochlorite for 5 min and rinsed with distilled water and divided into two groups. In the first 
group, the seeds were soaked in hydrogen peroxide (2%) for 4 hrs and then air dried.  Ten seeds 
were sown in each pot (25 cm in diam) containing equal amount of homogeneous loamy clay soil. 
These pots were irrigated with 80% (serve as control), 60 and 40% of hold water capacity. In the 
second group, the seeds were soaked in distilled water for 4 hrs and then air dried. The seeds were 
sown in each pot and were irrigated with 80, 60 and 40% of hold water capacity. The experiment 
was conducted under natural conditions (day length 12 - 14 hrs, at 20 - 22○ C and 70% humidity). 
After 60 days of sowing the plant samples were collected to determine certain morphological 
characters (shoot and root lengths and fresh and dry weights of shoots and roots) in addition to 
photosynthetic pigments, total carbohydrate, total soluble sugars, total free amino acids, proline, 
polyamine (putrescine, spermidine and spermine) and plant phytohormones (IAA, GA3 and ABA). 
 Chlorophyll a, b and carotenoids were determined following Vernon and Seely (1966). Total 
carbohydrates were determined using the colorimetric method as described by Dubois et al. 
(1956). Total soluble sugars were estimated in ethanol extract of plant tissue by the phenol-
sulphoric acid method as described by Dubois et al. (1956). Total free amino acids were 
determined using ninhydrin reagent (Moore and Stein 1954) using pure glycine as standard. 
Proline content was measured by using the method of Bates et al. (1973). 
 Putrescine, spermidine and spermine were extracted and determined using TLC according to 
Mietz and Karmas (1977) and Maijala and Eerola (1993) with some modifications. The method of 
extraction was essentially similar to that adopted by Shindy and Smith (1975). To estimate the 
amounts of acidic hormones IAA, GA3 and ABA, the plant hormone fractions and standard ones 
were methylated according to Vogel (1975).  
 Data were statistically analyzed using F-test and LSD at 5 and 1% levels of probability 
according to SAS-Programme (1982). 
 
Results and Discussion 
 The plant growth parameters of canola (shoot and root length, fresh and dry weights of shoots 
and roots) decreased significantly with increasing drought stress as compared with control plants 
(Table 1). H2O2 pretreatment alone or in combination with drought stress showed highly 
significant increase in all the growth parameters when compared with the control. 
 Drought stress resulted marked drop in plant growth parameters which may be attributed to 
damage of oxygen evolving complex of photosystem II and its reaction centers (Subrahmanyam  
et al. 2006). Hu et al. (2007) also found that shoot fresh weight of maize plants grown under 
drought stress was reduced as compared to control. Drought stress lowers the soil water potential 
resulting in reduction of plant growth (Munns 2002). Such decline in shoot and root length in 
response to drought might be due to either decrease in cell elongation resulting from the inhibiting 
effect of water shortage on growth promoting hormones which, in turn, led to a decrease in each of 
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cell turgor, cell volume and eventually cell growth (Banon et al. 2006), and/or due to blocking up 
of xylem and phloem vessels thus hindering any translocation through (Lavisalo and Schuber 
1998). Moreover, the decline in both fresh and dry weight of shoots and roots of common bean 
reveals the influence of water in stimulating and regulating the photosynthetic enzymes and 
growth promoting hormones, which thus influences dry matter production (Monti et al. 2006).  
 
Table 1. Effects of exogenous application of H2O2 on growth parameters of Phaseolus vulgaris plants 

under drought stress.  
 

 
Treatment 

Shoot 
length 
(cm) 

Root 
length 
(cm) 

Fresh wt. 
of shoots 

(gm) 

Dry wt. of 
shoots 
(gm) 

Fresh wt. 
of roots 

(gm) 

Dry wt. 
of roots 

(gm) 
Control 18.7 21.4 5.6 0.65 1.8 0.11 
H2O2 2% 21.3** 24.9** 6.5** 0.75** 2.5** 0.17** 
Hold water capacity 60% 16.5*** 19.6*** 5.2*** 0.55*** 1.6*** 0.09*** 
Hold water capacity 60% +  

H2O2 2% 
23.7** 23.3** 7.1** 0.83** 2.4** 0.16** 

Hold water capacity 40% 15.1*** 17.6*** 3.8*** 0.42*** 1.2*** 0.06*** 
Hold water capacity 40% + 

H2O2 2% 
20.9** 22.0** 6.0** 0.69** 2.0** 0.13** 

LSD at 5% 
LSD at 1% 

0.514 
0.739 

0.415 
0.597 

0.183 
0.263 

0.023 
0.034 

0.079 
0.113 

0.006 
0.010 

 
**Highly significant increase. ***Highly significant decrease. 
 Ren et al. (2000) who observed that exogenous application of H2O2 to wheat enhanced the 
root growth and fresh weight under drought stress. H2O2 enhance cell division and promoted the 
secondary wall formation (Potikha et al. 1999). Anonymous (2002) also found that H2O2 can 
stimulate growth of wheat.  
 Photosynthetic pigments contents in leaves of common bean plants were decreased highly 
significantly with increasing level of drought stress (Table 2). H2O2 application alleviates the 
drought stress by improving pigment contents in leaves of common bean plants. Pretreatment with 
H2O2 alone caused highly significant increase in photosynthetic pigments as compared to control 
one (H2O). 
 
Table 2. Effects of exogenous application of H2O2 on photosynthetic pigment content (mg/g) of 

Phaseolus vulgaris plants under drought stress. 
 

Treatment Chl a Chl b Chl a + b Carotenoids Total 
pigments 

Control 12.21 3.32 15.53 1.32 16.85 
H2O2 2% 13.22** 3.66** 16.88** 1.05*** 17.93** 
Hold water capacity 60% 10.01*** 2.72*** 12.73*** 1.08*** 13.81*** 
Hold water capacity 60% +H2O2 2% 14.09** 4.56** 18.65** 1.51** 20.16** 
Hold water capacity 40% 7.92*** 2.24*** 10.16*** 0.89*** 11.05*** 
Hold water capacity 40% + H2O2  2% 13.60** 3.64** 17.24** 1.44** 18.67 ** 
LSD at 5% 
LSD at 1% 

0.384 
0.553 

0.129 
0.186 

0.508 
0.730 

0.039 
0.056 

0.540 
0.777 

 

**Highly significant increase. ***Highly significant decrease. 
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 Significant decrease in chlorophyll a, b, carotenoids and total pigments under drought stress 
amount due to water deficit and mainly because of the damage to chloroplasts by active oxygen 
species (Agastian et al. 2000). Similarly He et al. (2009) also found that H2O2 pretreatment 
enhanced the photosynthetic rate in wheat seedlings under PGE-induced drought condition. 
Total carbohydrate contents decreased significantly with increasing level of drought stress (Table 
3). Pretreatment of seeds with H2O2 caused highly significant increase in the same contents in 
shoots of common bean plants. These results are in accordance with Saleh (2007) who found that 
mung bean showed a significant decline in carbohydrate content when faced a chilling stress, but 
treating mung bean with hydrogen peroxide significantly increased carbohydrate content when 
compared to the positive control. 
 

Table 3. Effects of exogenous application of H2O2 on total carbohydrate, total soluble sugars, total free 
amino acid and proline contents of Phaseolus vulgaris plants under drought stress. 

 
 

Treatments Carbohydrate 
(mg/100 g d.wt.) 

Soluble sugars 
(mg/100 g d.wt.)

Free amino acids 
(µg/g f. wt.) 

Proline 
(µg/g f.wt.) 

Control 153.50 38.03 18.65 91.30 
H2O2 2% 231.00** 48.58** 22.80** 97.44** 
Hold water capacity 60% 141.50*** 51.55** 23.58** 108.37** 
Hold water capacity 60% + H2O2 2% 204.88** 67.73** 33.33** 116.30** 
Hold water capacity 40% 118.00*** 67.83** 46.08** 116.41** 
Hold water capacity 40% + H2O2 2% 168.38** 81.98** 50.10** 126.35** 
LSD at 5% 
LSD at 1% 

6.677 
9.601 

2.562 
3.685 

2.169 
3.119 

2.091 
3.006 

 

** Highly significant increase. *** Highly significant decrease. 
 Total soluble sugars content in shoots of common bean plants significantly increase under 
drought stress alone or in combination with H2O2 pretreatment. The increase in sugar 
concentration may be a result from the degradation of starch (Fischer and Höll 1991). Starch may 
play an important role in accumulation of soluble sugars in cells. Starch depletion in grapevine 
leaves was noted by Patakas and Noitsakis (2001) in response to drought stress. 
 The tolerance mechanism in water-deficit may be associated with accumulation of 
osmoprotectants such as soluble sugars. The accumulation of soluble sugars is strongly correlated 
to the acquisition of drought tolerance in plants (Hoekstra and Buitink 2001). The accumulation of 
soluble sugars compounds protects the cell under stress by balancing the osmotic strength of the 
cytosol with that of the vacuole and the external environment. The compound also interact with 
cellular macromolecules as enzymes and stabilize their structure (El-Tayeb 2006). Soluble sugars 
may also function as a typical osmoprotectant, stabilizing cellular membranes and maintaining 
turgor. 
 Soluble sugars can function in two ways, which are difficult to separate: as osmotic agents 
and as osmoprotectors (Bohnert et al. 1995). As osmoprotectors, sugars stabilize proteins and 
membranes, most likely substituting the water in the formation of hydrogen bonds with 
polypeptide polar residues (Crowe et al. 1992) and phospholipid phosphate groups (Strauss and 
Hauser 1986). 
 The drought condition caused significant increase in the total free amino acids in shoot of 
common bean plants. Yadav et al. (1999) reported that amino acids content increased under 
drought stress apparently due to hydrolysis of proteins in chickpea. Ashraf and Iram (2005) stated 
that water deficit caused a significant increase in total free amino acids of all plant parts of 
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Phaseolus vulgaris and Sesbania aculeata. A maximum increase in free amino acids was observed 
in leaves and nodules of P. vulgaris.   
 Proline accumulation under drought stress may be that it contributes a protective role as 
scavenges of reactive oxygen species (ROS), resulted in improved adaptation ability and growth of 
plants under drought conditions (Turkan and Demiral 2009). Accumulation of proline is an 
important indicator of drought stress tolerance in higher plants (Ashraf and Iram 2005). Proline, 
has been suggested as one of the possible means for overcoming osmotic stress caused by the loss 
of water (Caballero et al. 2005). Proline is a non-protein amino acid that forms in most tissues 
subjected to water stress and together with sugar, it is readily metabolized upon recovery from 
drought (Singh et al. 2000). In addition to acting as an osmo-protectant, proline also serves as a 
sink for energy to regulate redox potentials, as a hydroxyl radical scavenger (Sharma and Dietz 
2006), as a solute that protects macromolecules against denaturation and as a means of reducing 
acidity in the cell (Kishor et al. 2005). However, Vendruscolo et al. (2007) stated that proline 
might confer drought stress tolerance to wheat plants by increasing the antioxidant system rather 
than as an osmotic adjustment. 
 Spermidine, putracine, spermine and total polyamine contents increased significantly in plants 
under drought stress (Table 4). In addition, pretreatment with H2O2 caused highly significantly 
increase in polyamine contents in shoots of common bean as compared to control plants except 
putracine which showed significant increase when seeds were pretreated with H2O2 alone.  
 
Table 4. Effects of exogenous application of H2O2 on polyamine contents of Phaseolus vulgaris plants 

under drought stress. 
 

Treatments Spermidine 
(ppm) 

Putracine 
(ppm) 

Spermine  
(ppm) 

Total polyamine 
(ppm) 

Control 1.22 21.40 1.67 24.29 
H2O2 2% 2.31** 28.6* 11.73** 42.64** 
Hold water capacity 60% 2.75** 30.98** 14.2** 47.93** 
Hold water capacity 60% + H2O2  2% 3.38** 54.96** 19.83** 78.17** 
Hold water capacity 40% 5.39** 80.23** 24.55** 110.17** 
Hold water capacity 40% +H2O2 2% 8.96** 128.04** 44.5** 181.5** 
LSD at 5% 
LSD at 1% 

0.45 
0.64 

6.53 
9.39 

2.32 
3.34 

9.25 
13.30 

 

*Significant increase. **Highly significant increase. 
 

 Results show that spermidine, putracine and spermine significantly increased under drought 
stress alone or in combination with pretreatment of H2O2. These results confirm with results 
obtained by Kasukabe et al. (2004) working on transgenic Arabidopsis thaliana who found that 
plants exhibited a significant increase in spermidine synthase activity and spermidine content in 
leaves showing enhanced tolerance to various stresses including drought, salinity, freezing and 
hyperosmosis. The results strongly suggest an important role of spermidine as a signalling 
regulator in stress signalling pathways, leading to build-up of stress tolerance mechanisms in 
plants under stress conditions.  
 Polyamines (PAs) are ubiquitous in both eukaryotes and prokaryotes. The most common PAs 
in higher plants are putrescine (Put), spermidine (Spd) and spermine (Spm). In plants, PAs are 
commonly associated with responses to biotic and abiotic stresses and have been shown to 
function in drought and chilling tolerance in some situations (Kakkar et al. 2000). 
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 Polyamines are involved in plant defense to environmental stresses (Bouchereau et al. 1999). 
In general, plant species and cultivars with high stress tolerance are endowed with a great capacity 
to enhance polyamine biosynthesis in response to environmental stresses including drought. The 
initiation of polyamine accumulation requires an osmotic signal (Imai et al. 2004) also suggest 
that an osmotic, rather than ionic effect is the main signal triggering the polyamine response under 
drought. It may act as a protective for the plasma membrane against stress damage by maintaining 
membrane integrity (Roy et al. 2005), preventing superoxide-generating NADPH oxidases 
activation (Shen et al. 2000) or inhibiting protease and RNase activity (Bais and Ravishankar 
2002). 
 Data presented in Table 5 demonstrated that IAA and GA3 levels were markedly reduced in 
common bean shoots with increasing levels of drought stress when compared with those of the 
control (80% hold water capacity). ABA content showed highly significant increase proportional 
to drought stress. The exogenous application of H2O2 alone or in combination with drought stress 
caused significant increase in both IAA and GA3 contents. In contrast, ABA content showed 
highly significant decrease as compared with control plants. 
 
Table 5. Effects of exogenous application of H2O2 on phytohormone contents (mg/100 g) of Phaseolus 

vulgaris plants under drought stress. 
 

Treatment IAA GA3 ABA 
Control 13.30 15.04 3.45 
H2O2 2% 17.71** 31.30** 2.23*** 
Hold water capacity 60% 7.53*** 12.90*** 5.25** 
Hold water capacity 60% + H2O2  2% 17.24** 25.32** 4.34** 
Hold water capacity 40% 6.20*** 10.04*** 8.62** 
Hold water capacity 40% +H2O2 2% 15.08** 21.43** 2.71*** 
LSD at 5% 
LSD at 1% 

0.78 
1.13 

1.27 
1.83 

0.35 
0.50 

 
**Highly significant increase. ***Highly significant decrease. 
  

 Phytohormones regulate the protective responses of plants against both biotic and abiotic 
stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. IAA and 
GA3 levels were markedly reduced in drought stressed common bean plants as compared with 
those of the control while reversibly raised the abscisic acid (ABA). These results were similar to 
those of Zhang et al. (2006) and Abdalla and El-Khoshiban (2007) who found that water stress 
decreased the content of each of GA3, GA4, IAA and zeatin whereas it increased ABA values. 
Abdalla (2011) also found that drought stress in Lupinus albus gradually declined the contents of 
all growth ptomoting hormones (auxins, gibberellins and cytokinins) while reversibly raised the 
abscisic acid (ABA) amount below and above those of the untreated controls respectively. 
 Drought stress appeared to inhibit the biosynthesis of auxins and gibberellins and/or increase 
their degradation (Poljakoff-Mayber and Lerner1993). Furthermore, Shi et al. (1994) working on 
maize seedlings proved that under water stress induced by polyethylene glycol, IAA and GA3 
content declined, while ABA content increased. 
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