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Abstract 
 Constructing a sensibly functional gene interaction network is highly appealing for better understanding 
system-level biological processes governing various Populus traits. Bayesian Network (BN) learning 
provides an elegant and compact statistical approach for modeling causal gene-gene relationships in 
microarray data. Therefore, it could come with the illumination of functional molecular playing in Biology 
Systems. In the present study, different forms of gene Bayesian networks were detected on Populus cellular 
transcriptome data. Markov blankets would likely be emerging at every possible gene regulatory Bayesian 
network level. Results showed that PtpAffx.1257.4.S1_a_at,1.0 hypothetical protein is the most important in 
its possible regulatory program. This paper illustrates that the gene network regulatory inference is possible 
to encapsulate within a single BN model. Therefore, such a BN model can serve as a promising training tool 
for Populus gene expression data for better future experimental scenarios. 
 
Introduction  
 The development of the theory of causal modeling roots back to the 1950s, which has left 
some scientific community controversies. The core of these debates and controversies is the 
Markov condition/ assumption, an assumption made in the Bayesian probability theory. BN has 
been used to model chlordecone bioaccumulation in plants (Liber et al. 2020) to discover the best 
regulators of drought response (Lahiri et al. 2019) and to infer gene regulatory networks (Vignes 
et al. 2011). A Bayesian gene network consists of a digraph, which connecting regulatory genes to 
their targets, and elegantly encodes conditional independence between genes. Technically, BN is a 
combination of the Bayesian theorem with the directed acyclic graph (DAG). The DAG 
decomposes the joint probability distribution. Given the DAG, the joint probability distribution of 
the expression of 6 nodes/genes factorizes as follows: 
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 In a BN, every gene must have a conditional probability table (CPT). For each gene, CPT 
indicates all the possible combinations of values of the parent genes. Each possible combination is 
called an Instantiation of the parent set.  A BN structure is usually obtained from the data using 
score-based or  constraint-based  approaches  (Koller and Friedman 2009). Score-based algorithms 
maximize the BN likelihood, using Markov chain Monte Carlo (MCMC); to search the space of 
network structures, it operates on edge additions, deletions, or inversions.  Score-based  algorithms 
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have been reported to fit well on simulated genetics and genomics data (Tasaki et al. 2015). 
However, the present researchers initially learned the network's undirected skeleton using repeated 
conditional independence tests in constraint-based approaches. Then by resolving directional 
constraints, each edge direction was assigned (v-structures and acyclicity) to the skeleton. Genetic 
mapping of multiple complex traits has been done (Scutari et al. 2014). Due to its complexity, 
Bayesian gene network inference is feasible for systems of at most a few hundred genes or 
variables through conventional algorithms (Beckmann et al. 2018, Wang et al. 2019). The 
topology of the network of BN encodes conditional independence assertions. Therefore, it was 
possible logically find a set of possible gene regulators out of entire gene expression data. In the 
present study, it was tried to find those genes in the Populus genome.  
 Drought is pivotal abiotic stress that affects plant development and poplar productivity 
(Hamanishi et al. 2015). Therefore, poplar breeding requires an understanding of the underpinning 
molecular regulatory machines controlling poplar resistance to drought stress. Molecular studies 
have revealed that drought stress might take place in different plant tissues. For instance, many 
plant transcriptomic studies have addressed transcriptional changes in roots (Cohen et al. 2010, 
Lorenz et al. 2011, Stolf-Moreira et al. 2011, Dash et al. 2018) due to drought stress over different 
genotypes (Cohen et al. 2010, Stolf-Moreira et al. 2011, Cao et al. 2014, Hamanishi et al. 2015, 
Jia et al. 2016). Moreover, gene network analysis on poplar root transcriptome revealed a 
hierarchical-like gene network structure in which the highest hierarchical level 2,934 genes, 
affected by nine super hubs (super genes) (Hamanishi et al. 2015) following different levels of 
drought stress (Cohen et al. 2010, Stolf-Moreira et al. 2011). 
 Here, microarray-based transcriptomic Bayesian gene network analysis of drought-resistant in 
black poplar genotypes measured in well-watered, moderate drought, severe drought, and post-
drought re-watering conditions has been reported. Understanding the characteristics of poplar gene 
regulation of drought resistance, including various molecular interaction processes, elaborate 
functional knowledge of genes underlying this stress-induced phenomenon would be conducted.  
 
Materials and Methods 
 Using the GEOquery package (Davis and Meltzer 2007), information directly from the GEO 
database with accession number GSE76322 was downloaded in this research. Initially, data 
dimensions were 61413×18. To run the Bayesian regulatory network, the probes with the highest 
variances were selected. Finally, the data dimension was reduced to 2210 × 18 (Table 1). The 
bnlearn package was used to infer the regulatory Bayesian network on the data. To determine the 
best network structure, the hill-climbing algorithm was used. The result of bnlearn was considered 
as a regulatory Bayesian network. The number of nodes, edges, Markov blanket (MB) size, 
neighborhood size, and the learned network's branching factor were calculated in this study. It has 
been assumed that with the broader MB size, the giant module network could be detected. In 
addition, with the bnlearn package help, the adjacency matrix with Cytoscape-based aMatReader 
software was imported to Cytoscape. Using the Network Analyzer plugin, a comprehensive set of 
topological parameters such as number of nodes, edges, network diameter, radius and clustering 
coefficient, neighborhood connection, shortest path length, number of familiar neighbors, the 
degree distribution, the centripetal proximity parameter, etc. were calculated for the present 
network. 
 
 
 



SIMPLE BAYESIAN GENE NETWORK LEARNING IN POPULUS 1079 

 

Table 1. Estimation of structural Bayesian network parameters with Hill Climbing 
algorithm. 

 

Parameters values 
No. of nodes 2210 
No. of arcs (Edges) 1000 
Undirected edges 0 
Directed arcs 1000 
MB 0.92 
NS 0.90 
BF 0.45 
Penalization coefficient            1.445186 
No. of tests 4647736 

    MB: Markov Blanket, NS: Neighborhood Size, BF: Branching Factor, HC: Hill Climbing. 

Results and Discussion  
 In general, for high-dimensional genetics and genomics data, BN learning is challenging since 
the number of expected networks scales up exponentially with the number of genes. The 
computational cost of conventional BN inference could be a prohibitive burden (Wang et al. 
2019). Table 1 represents the general parameters of the observed probe-based Bayesian regulatory 
network. The number of probes (nodes), as can be seen in Table 1, is 2210, which is higher than 
the number of directed edges (1000) that is logical in this context. This would indicate that some 
orphan probes in the network or some nodes are associated averagely high with other nodes. One 
of the main parameters of detected BN is the MB (0.45). It can be declared that MB essentially 
and explicitly is a minimum set of genes that would block all back-door paths that could be 
discovered from learned BN. The MB of a gene includes its parents, children, and co-parents. 
Parents in the MB separate the impact of specific disturbance on the outcome from the rest of the 
gene network. Therefore, this concept can be used to select a smaller set of relevant genes in high-
dimensional problems. The MB is proven to be highly effective for feature reduction in high-
dimensional problems, sometimes reducing the number of variables a thousandfold without any 
loss of accuracy (Aliferis et al. 2003, Fu and Desmarais 2010, Shen et al. 2008, Tan and Liu 
2013). It has been shown that the MB establishment is also instrumental in creating gene module 
networks. In other words, one could say that number of MBs and their sizes in BN may reflect the 
sense of modularity in the network. Parents of genes in the BN are the connections that would 
reflect causalities in the gene network. By identifying the MBs in different sizes over all genes in 
the gene network, one can quickly draw different gene sizes that cohesively function together, e.g., 
module network. 
  Figure 1 illustrates seven genes in a postulated gene regulatory BN. These seven genes 
constitute a structure which is called MB. The U1, Um genes are parents of the X gene, and Y1 
and Yn genes are Childs of the X gene in which the other two parents, e.g., Z1j and Znj genes, 
share paternity with the X gene. This structure demonstrates some cohesive acting of genes, which 
will be called them up as gene modules. Finding these structures in BN would be biologically 
appealing. In the present study, it was turned out that many MB are cohesively overlapped. 
Therefore, a general picture of gene modules was not seen. It is expected that some grape-like 
structures, i.e., gene modules due to MB; such structures were not visually turned up on the 
learned BN. The main finding of this study, e.g., PtpAffx.1257.4.S1_a_at,1.0, hardly bordered as a 
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specific set of probes as gene module. In other words, this probe (and its belonging gene) might be 
involved in many other MB as well. This may indicate the level of complication of doughtiness on 
the poplar genome. In other words, drought stress has caused many different biological pathways 
actions. In every gene regulatory BN network, the total connectivity for each gene/probe could be 
found, and this measure in BN can be split up into out-degree and in-degree. Fig. 2, 
Supplementary Tables 1 and 2 address some topological aspects of learned BN. Putting this in a 
biological context, it could be seen that nodulizing BN has been hardly achieved. One reason 
could be the fact that drought stress affected many different functional parts of the poplar genome.  
 

 
Fig. 1. MB of a given postulated gene BN showing MB of a node/probe/gene and the set containing the 

node/gene's parents, children, and co-parents. 
 

 However, the distribution of gene out-degree has been much higher than gene in-degree. This 
is biologically supported as out-degree probes/genes could be considered as a regulator, which 
patently indicates that a small number of genes had many out-degrees. Some of these high-out-
degree genes are shown in Supplementary Table 2. The results of this table can be used for further 
analysis, for example, utilizing suitable gene set enrichment analysis.  A general feature of many 
gene networks is their nature of scale-free topologies addressing a gene degree distribution that 
can be shown with a function of power-law, e.g., P(k) = Ck−α, in which P(k) is the randomly 
selected gene having degree k (or k connections), α is the power-law exponent, and the 
constant C is a Riemann's zeta function, e.g., ∑ ଵ

௡ ೞ
ஶ
௡ୀଵ  (s = complex variable and n = integer) 

normalizing the power law probability distribution, e.g., ∑ ܲ(݇) =1ஶ
௞ୀଵ . In scale-free gene 

network topologies, most genes generally have relatively few interactions reflected as a lower 
degree. In contrast, a small number of genes, so-called 'hubs' genes, have a higher degree.  This 
may prohibit seeing clean-up gene module in studies similar to the pr4esent study. 
 To predict gene function in poplar gene expression data using DNA microarray datasets, 
private or publicly available databases are needed.  The present method allows users to extract 
genes involved in biological processes, which could be valuable for understanding similar tree 
species mechanisms (Ogata et al. 2009). The mode of genes in terms of being regulator or 
regulated is not reflected in this type of database and could make the practical biological 
application of such databases restrictive. The public domain data have been used in the present 
study and checked up  on  a  new  hypothesis  in  the Populus genome. This data are used to create 
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Supplementary Table 1. Simple parameters in network Analyzer. 
 

Clustering coefficient 0.000 
Number of nodes 2211 
Connected components 1 
Network diameter 1 
Network radius 1 
Shortest paths 2210(0%) 
Characteristics path length 1 
The average number of neighbors 1.999 
Network density 0.0 
Isolated nodes 426 
number of self-loops 0 
multi-edge node pairs 0 
Analysis times (Sec) 0.874 

 
Supplementary Table 2. The CytoHubba plugin chose the first 30 genes in the MCC method. 
 

PtpAffx.1257.4.S1_a_at,1.0 Hypothetical protein /// hypothetical protein 
PtpAffx.1258.1.S1_s_at,1.0     Hypothetical protein 
PtpAffx.1258.4.S1_s_at,1.0   Aktin9 
PtpAffx.1259.1.S1_s_at,1.0    Hypothetical protein 
PtpAffx.12595.1.A1_s_at,1.0 Hypothetical protein 
PtpAffx.126167.1.S1_at,1.0 Branched-chain amino acid aminotransferase-like protein 
PtpAffx.126235.1.S1_at,1.0   Auxin-responsive family protein 
PtpAffx.12628.1.S1_at,1.0     Metal handling. Binding, chelation, and storage 
PtpAffx.126599.1.A1_s_at,1.0  Arginine decarboxylase 
PtpAffx.1263.1.A1_a_at,1.0     Hypothetical protein 
PtpAffx.12675.3.A1_s_at,1.0   Unknown protein; predicted by gene finder 
PtpAffx.12675.3.A1_a_at,1.0   Hypothetical protein    
PtpAffx.12684.1.S1_at,1.0     pyrophosphate-dependent 6-phosphofructose-1-kinase, putative 
PtpAffx.12676.1.S1_at,1.0     MAC/Perforin domain-containing protein 
PtpAffx.1269.1.A1_x_at,1.0  Putative thioredoxin 
PtpAffx.1269.1.A1_a_at,1.0   Putative thioredoxin 
PtpAffx.12712.1.S1_at,1.0     Hypothetical protein 
PtpAffx.127056.1.A1_at,1.0   Signal transducer activity 
PtpAffx.12745.1.A1_at,1.0    Unknown protein 
PtpAffx.1273.1.S1_at,1.0    Copper ion binding, laccase activity, 
PtpAffx.127847.1.A1_at,1.0    DNA binding protein 
PtpAffx.127644.1.A1_s_at,1.0  Hypothetical protein 
PtpAffx.12800.1.S1_a_at,1.0   Hypothetical protein 
PtpAffx.127878.1.A1_at,1.0   Unknown protein 
PtpAffx.1286.2.S1_s_at,1.0   S-adenosylmethionine decarboxylase  
PtpAffx.1286.1.S1_s_at,1.0   S-adenosylmethionine decarboxylase, putative 
PtpAffx.12874.1.S1_at,1.0   Hypothetical protein 
PtpAffx.1286.5.S1_s_at,1.0  Hypothetical protein 
PtpAffx.128895.1.S1_at,1.0   Lysine-ketoglutarate reductase/saccharopine dehydrogenase 
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This may prohibit seeing clean-cut gene modules in studies similar to our study.  
 

 
Fig. 2. The snapshot of gene connectivity in learned BN in two graph forms. 

 
a gene network (Cai et al. 2014) who assigned the functional category modules of Populus cell 
wall genes using a combination of a genome-wide Populus gene co-expression network (PGCN) 
and module detection and gene ontology (GO) enrichment analysis. However, this study revealed 
a probabilistic one instead of a Pearson-based gene correlation matrix. The data did not find any 
topological properties of the network indicating scale-free and modular behavior. As it turned out, 
the researchers intensely relied on BN topological properties, e.g., MB, to address possible 
modules in the present data. Figures 1 and 2 showed no sign of modules. 
 In the domain of gene expression high throughput data, probabilistic dependencies arise 
because genes are related in different ways (e.g., through common phenotype, logical connections, 
pathway connections, through (non-causal) physical laws, constrained of thermodynamic laws or 
structural boundary conditions). This may prohibit seeing clean-cut gene modules in studies like 
the present study. Figure 1 demonstrates that no sign of modules is trackable to pick one out of the 
gene regulatory network. The method used in this study could likely help to identify and 
characterize cell wall-related genes in Populus. Zhang and Yin (2016) applied graph-based theory 
and identified 14 probe-sets/genes related to B plasmodesmata GO cellular component term and 
many other genes for other tissues. However, the graph-based networks of the different tissues 
have shown different topological properties. They illustrate that genes in the root network were the 
most highly co-expressed. Whereas the leaf genes were the weakest co-expressed, and those in 
wood were in the intermediate. These topological network differences provide some unseen 
epigenetic mechanisms in different tissues. The genetic mechanism underlying the different 
topological properties among these tissues remains unknown and is worthy of further investigation 
in future studies. In general, finding gene modules in Populus data has an almost long history 
(Gronlund et al. 2009, Liu et al. 2016, Han et al. 2020). In most of them, the co-expression 
analyses have been the cornerstone in finding modules of co-expressed genes; gene modules 
display distinct expression profiles. However, addressing hub genes in this kind of study is a 
difficult task. For example, Fig. 2 shows how genes are cohesively related, and therefore, it is 
pretty challenging to pick up and address some genes which actively responded to drought.  
 In the MCC algorithm, it is possible to highlight motivated biological molecules in the 
network. Some yellow circle nodes in figure 3 display the top ten most connected hub genes. 
Figure 3 reveals a close relationship between other genes and these top 10 genes, making it 
challenging to report some general gene module structures in achieved data. However, in this 
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study, the applied BN model should be regarded as a conjecture, which should be tested using 
more and better posed high dimensional data.   
 

 
Fig. 3. Highlighting top 10 genes with their neighbors using MCC algorithm. 

 

 Poplar has emerged as an ideal model system for studying woody plants. For better 
understanding the biological processes underlying various poplar traits, e.g., wood development, a 
comprehensive functional gene interaction network is highly needed. To more effectively 
screening down, Some highly connected genes have been used in this study. Poplar Gene offers 
comprehensive functional interactions and extensive poplar gene functional annotations. Seminal 
research on the poplar genome shows that a relatively small genome, quick growth trend, and 
simple genome clonal manipulation are the interesting biological features that have made poplar a 
long-lived forest tree model system (Liu et al. 2016). Drought stress is the leading cause of plant 
loss worldwide, and drought is an essential environmental factor affecting almost all plant species 
(Dash et al. 2018). As a model, Populus provides an opportunity to study the stress response in a 
perennial tree growing as a commercial biomass product to produce carbon-neutral energy. 
 In the present study, as can be seen in Supplementary Table 2, many genes turned out to be 
highly connected ones: hub genes. Moreover, their annotations reveal that they do not have 
comprehensive biological support (as indicated by hypothetic terms). Therefore, it was not easy to 
see their possible protein interaction in the STRING database. Protein-protein interaction networks 
play an essential role in understanding the system level of cellular processes. These networks can 
filter and evaluate functional genomic data and create an intuitive platform for annotating proteins' 
structural, functional, and evolutionary properties. The aktin three genes were fed to the STRING 
database, and the grid of protein interaction was extracted. STRING is a protein-protein 
interactions database (the known and predicted one) and a retrieval search tool. The results of 
drawing interactive networks in the STRING database are shown in Fig. 4. The result of the 
protein network was architecturally different from those obtained from the Bayesian gene 
network. In other words, some inconsistency and discrepancy in the results of the network learned 
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by STRING were observed compared to the learned BN network, which shows that post-
transcriptional modification may play crucial roles in regulating gene expression in the Populus 
genome.   
 

 
Fig. 4. Network of protein-protein interactions by STRING database information. 

 
 This study logically relied on Populus mRNA data; therefore, talking about the PPI network 
does not make much sense. However, it is believed that the whole body or tissue-specific protein-
protein interactome (PPI) map could highlight drought tolerance in the Populus. Large-scale 
studies of PPIs accompanying the species-specific database support the interplay of cascading 
translational protein levels for drought-related stress adaptive mechanisms in Populus. 
Interestingly, many genes that became hub genes in this study were biologically involved in 
photosynthesis-related processes and light reactions. These are the key findings of this study. Most 
likely abiotic processes like drought act on the biological system level of Populus.  \ 
 

 
 

Fig. 5. Boxplot of GSE764322 using in this study. 



SIMPLE BAYESIAN GENE NETWORK LEARNING IN POPULUS 1085 

 

 Boxplot is a visualization tool of microarray data. Each box stretches from the lower hinge -
defined as the 25th percentile to the upper hinge - the 75th percentile- and the median is delineated 
as a line across the box. This figure has appeared were taken in microarray experiment data at the 
top of other figures. However, some so-called downside-up approaches were taken in a way that is 
shown at the bottom of the table to make it visually much more transparent than the treatments 
used in applied GSE76322, which did not impart much more diversity on the gene expression 
(Fig. 5). However, this sort of view should not mislead researchers, as in this study, many probes 
turned out to be differently expressed. It is believed that BN can decipher information on Populus 
microarray data, which should be figured out in subsequent studies.  
 For the first time, a BN was learned out on Populus DNA microarray data. This study 
identified a gene network in the Populus to highlight candidate genes used as regulator genes. The 
top 30 hub genes, in which some of them had low if any, valid biological information were 
identified. It was noted that the MB in BN of gene regulation could be assumed to narrow down 
the whole gene network complexity. Statistically speaking, the existence of an MB means external 
genes are conditionally independent of internal genes and vice versa. This is biologically 
appealing. Despite extensive physiological and morphological descriptions of the Populus 
response to drought, little work has been done to explain the differences in gene levels and 
examine the similarity of the stress response between this perennial and the annual crop. Because 
poplar genome sequences and poplar microarrays are now available, a bridge can be made 
between quantitative trait locus mapping approaches, the candidate gene approach, and 
transcription. 
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