META-ANALYSIS OF QTL ASSOCIATED WITH STARCH PASTING VISCOSITY IN RICE (ORYZA SATIVA L.)

PENG YOULIN*, ZHANG XIA¹, ZOU TING, WU FAN², TANG SHIWEN, LI LAMEI, CHEN YONGJUN, YANG GUOTAO, WANG XUECHUN AND HU YUNGAO*

Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China

Keywords: Meta-analysis, Rice, Quality, Starch viscosity profile, QTL

Abstract

Rapid Visco Analyzer (RVA) profiles are important traits for indicating rice quality, which are controlled by quantitative trait loci (QTL). In the past two decades, hundreds of QTL for rice RVA profiles have been detected, but without an integration study. Consistent QTL regions associated with rice RVA profiles by QTL meta-analysis with genetic information of 592 QTL for eight RVA profiles were studied. A total of 82 meta-QTL for RVA profiles were detected on 12 chromosomes. MQTL possessed narrower confidence intervals than the initial QTL and candidate genes were identified within each MQTL. These MQTL and candidate genes are beneficial for future marker-assisted selection gene cloning.

Introduction

Rice quality is a complex trait that is composed of four components: milling, appearance, nutrition, cooking and eating quality (Bao 2012). In particular, cooking and eating quality is deemed to be the most important trait affecting consumer acceptability of rice and is determined by several important indicators (Xu *et al.* 2015). The starch viscosity properties by using RVA profile represents pasting behavior and is based on rice flour that has been subjected to a standard temperature-programmed heat-hold-cool-hold protocol. The RVA starch paste viscosity characteristics are described using the following eight parameters: peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), peak time (PeT), pasting temperature (PaT), breakdown viscosity (BDV), setback viscosity (SBV) and consistency viscosity (CSV). These traits are controlled by quantitative trait loci (QTL). There are a number of QTL have been detected (Bao *et al.* 2000, 2002, Zhang *et al.* 2007, Liu *et al.* 2011, Yang *et al.* 2012, Hsu *et al.* 2014 and Zheng *et al.* 2012), but no report on QTL meta-analysis of rice RVA profiles. To integrate results from several studies by using diverse mapping populations, multiple environments, and different molecular markers, QTL meta-analysis can narrow down the regions of QTL, compare QTL positions, and validate conserved QTL compared with the initial QTL.

In this study, 592 QTL for RVA profiles from 13 maps in rice was collected. These QTL were used to perform meta-analysis to refine QTL position on Bio Mercator V4.2 (Versailles, France). Identification of meta-QTL (MQTL) provides high credibility QTL combined multiple studies and narrowed confidence intervals (CI) of initial QTL. These MQTL obtained from meta-analysis provide resources for rice breeding and gene mining in future.

^{*}Author for correspondence: <<u>youlinp@hotmail.com</u>>; <<u>huyungao@sina.com</u>>. ¹Sichuan Agricultural University, Huimin Road 211, Wenjiang district, Chengdu, China, 611130. ²Mianyang Academy of Agricultural Sciences, Songjiang Road 8, Youxian district, Mianyang, China, 621023. **DOI:** https://doi.org/10.3329/bjb.v50i2.54082

Materials and Methods

QTL of eight RVA profiles and their genetic maps were collected from publications and public databases based on following principles. It was necessary to obtain detailed information about QTL, including QTL name, trait, different environments, time, chromosome of QTL, LOD scores, R2 values (phenotypic variation explained, PVE), confidence intervals and QTL positions. These collected data were edited in text document of Bio Mercator v3 format.

The consensus map was obtained by Wu *et al.* (2016). All markers shown on each linkage used package LinkageMapView in R (Ouellette *et al.* 2018). All the QTL projections were performed according to Wu *et al.* (2016).

Based on the integrated consensus map and initial QTL projections, a QTL meta-analysis according to the QTL clusters on each linkage group (LG) of the consensus map to identify MQTL using BioMercator V4.2 and algorithms from the MetaQTL software (Wu *et al.* 2016) were performed. Usually, the lowest AIC value was used to select the best QTL model for each LG and then calculated QTL from the optimum model is regarded as the meta-QTL (MQTL) (Wu *et al.* 2016). The study was conducted in Mianyang, Sichuan, P.R. China.

Results and Discussion

To collect genetic map and QTL information for rice RVA profiles, Gramene (www. gramene.org), QTARO (http://qtaro.abr.affrc.go.jp/) and recent reports in the literature up to 2018 were amined. A total 13 studies were identified which reported 592 QTL for RVA profiles (Table 1).

The initial QTL were distributed on all 12 LGs; the highest number was on LG06, followed by LG01, LG02, LG04, and LG07 (Fig.1A). The phenotypic variance explained by the initial QTL ranged from 1.2 to 79.04% and the LOD value varied from 0.59 to 79.16 (Fig.1B).

Мар	Cross	Population	Population	Marker	QTL	References
name	name	type	size	number	number	
2000-Вао	ZYQ8×JX17	DH	132	124	25	(Bao et al. 2000)
2002-Вао	IR64×Azucena	DH	135	460	13	(Bao et al. 2002)
2007-Zhang	Nikken2×Milyang23	RIL	111	83	34	(Zhang et al. 2007)
2011-Liu	Asominori×IR24	CSSLs	66	79	168	(Liu et al. 2011)
2011-Nguyen	Koshihikari×Guichao2	RIL	184	65	28	(THOA 2011)
2011-Than	Koshihikari×Nanjing11	RIL	140	152	30	(Hanh 2011)
2012-Yang	9311×Nipponbare	RIL	190	200	75	(Yang et al. 2012)
2012-Zheng	Koshihikari×Kasalath	RIL	182	104	37	(Zheng et al. 2012)
2014-Hsu	TNG78×TCS17	RIL	190	89	27	(Hsu et al. 2014)
2015-Shao	Koshihikari×9311	CSSLs	138	53	10	(Shao et al. 2015)
2017-Yao	Zhongyouzao8×Toyonishiki	RIL	153	236	97	(Yao et al. 2017)
2017-Zhang	Sasanishiki×Habataki	RIL	85	202	41	(Jie et al. 2017)
2018-Zhang	CJ06×TN1	DH	95	69	7	(Sheng-Hao et al. 2018)

Table 1. Details of references used for this study.

The new consensus map contained 9732 markers which was up to 1750.4 centimorgan (cM) long with an average marker density of 4.17 loci per cM and 12 LGs on which 7297 loci were mapped (Fig. 2). This new consensus map contains more markers and higher marker density, making it more suitable for the present QTL meta-analysis.

Then a meta-analysis of the 370 QTL was performed, the QTL model of each chromosome was selected by the lowest AIC. In total, 82 MQTL (~22.1%) were obtained with a confidence interval (CI) of 95%. The number of MQTL on each chromosome varied from 4 to 10. The PVE of these MQTL varied from 0.03 to 0.45, 18 MQTL had PVE > 0.2. Confidence interval of 92.68% of all MQTL was narrowed down compared with their mean values of the original QTL (Table 2).

Fig. 1. Summary of initial QTL. A. Distribution of all the initial QTL on 12 LGs; B. Phenotypic variances and LOD value of each initial QTL. PVE, phenotypic variance explained by the QTL.

Rice starch past viscosity (RVA profiles) are easy-measure traits for indicating rice quality with numerous genetic researches which were carried out to identify QTL for eight RVA profiles. This is the first study for meta-analysis of RVA profiles, integrating the location of hundreds of

			(YB (YB		ET4 ET4	P 11			(BI															ontd.)
Cloned gene ⁱ		CIEJ	OsGAM OsGAM	FUWA	OsSWE	OSBEII			OsNF-}		OsPE					GPA3		OSARG	GIFI			FLO2		(C
No. of candidate genes	12 32	425 274 364	241 548	29	662 348	41	178	3	338	347	350	515	327	218	13	155	58	127	75	29	697	245	8	
Physical length of MQTL (bp)	65,886 205,387	3,032,285 1,957,747 7 678 577	2,020,222 1,536,484 3,477,840	243,290	4,716,735	311,235	1,327,833	15,586	2,102,511	2,100,078	2,332,467	3,443,772	2,175,797	1,610,204	115,507	815,545	347,146	773,627	483,736	163,989	4,574,911	1,524,092	55,568	
Physical end (bp) ^h	9,391,431 23,326,243	25,106,668 25,071,392 26 815 824	35,197,724	7,664,319	15,900,167	19,653,251	21,475,633	25,442,875	30,538,241	3,497,275	8,393,689	12,408,792	12,544,690	24,600,376	28,358,120	35,158,692	22,893,791	1,136,610	20,516,294	22,168,354	29,341,162	34,158,649	2,100,423	
Physical start (bp) ^h	9,325,545 23,120,856	22,074,383 23,113,645 24 187 317	24,471,055 34,471,055 31,719,884	7,421,029	11,183,432	19,342,016	20,147,800	25,458,461	28,435,730	1,397,197	6,061,222	8,965,020	10,368,893	22,990,172	28,473,627	34,343,147	23,240,937	362,983	20,032,558	22,332,343	24,766,251	32,634,557	2,044,855	
CI of projected QTL (cM) ^g	18.13 2.51	1.06 1.02 6.35	6.2 4.02	7.92	0.98	7.55	1.22	13.11	16.75	4	14	7.16	17.1	25.24	3.9	7.33	2	8.97	18.47	2.51	6.7	23.11	2.77	
No. of projected QTL ^f	=	v - z	+ 11 +	5	7 7	+ 1-	2	8	10	1	10	2	7	5	9	3	2	3	4	2	1	5	2	
MQTL CI (cM)°	1.07 2.5	0.23 1 7 43	0.31	2.35	0.69 5 02	2.39	0.84	0.63	0.05	4	1.01	1.98	5.29	3.43	0.58	0.98	1.41	0.77	2.66	1.77	6.65	2.4	1.94	
Marker Interval ^d	E476S-RM8133 RM6716-RM5	R1928-RM3366 R3072-RM1349 D7635 DM737	C2340-RM6117 C2340-RM6117 RM3324-RM265	RM2939-RM7636	RM1081-RM5812	RM341-RZ386	S2068-RZ166	R1737-S14054	RM6122-RM530	RM4853-RM523	OSR16-RM1338	RG369-RM282	C606-C269A	S1466-R19	RZ745-C1351	E10579S-RM16157	RS9-RM3524	E20565S-RM3892	RM1359-RM1155	S12568-C1087	E31962S-R2737	RZ590-R1427	R2693S-R3332	
Weight ^c	0.29 0.03	0.13 0.03 0.1	0.12	0.12	0.07	0.17	0.07	0.2	0.25	0.03	0.29	0.07	0.21	0.12	0.19	0.09	0.12	0.21	0.2	0.13	0.08	0.27	0.1	
MQTL Position (cM)	47.43 68.65	71.54 73.9 77 56	93.91 99.78	40	46.69 52.74	66.49	70.96	87.14	107.59	44.17	58.97	71.94	79	106.67	125.19	148.88	16.73	25.85	54.32	62.09	77.23	89.04	20.39	
Chr (LG) ^b	7			7						7							9						8	
MQTL ^a	MQTL1.1 MQTL1.2	MQTL1.3 MQTL1.4 MOTL1.5	MQTL1.6 MOTL1.7	MQTL2.1	MQTL2.2	MQTL2.4	MQTL2.5	MQTL2.6	MQTL2.7	MQTL3.1	MQTL3.2	MQTL3.3	MQTL3.4	MQTL3.5	MQTL3.6	MQTL3.7	MQTL4.1	MQTL4.2	MQTL4.3	MQTL4.4	MQTL4.5	MQTL4.6	MQTL5.1	

Table 2. MQTL of rice RVA profiles and candidate genes in the regions.

YOULIN *et al*.

loned ene ⁱ	halk5; GS5	SES/GW5/qSW5		'LO4/OsPPDKB	'LO4/OsPPDKB		aVISS2	x_{z}			ISSS/ISSSI		LK/SSIIa				P6	SAPL4/OSAGPL4							SEI	sMST5	sMST5			sAmy3D	(Contd.)
No. of C candidate ge genes	139 C	279 <i>G</i>	132	86 F.	225 F.	68	<i>0</i> 96	<u>и</u> 06	1	49	180 0	19	44 A.	49	164	60	347 R	92 0	285	544	657	142	478	253	77 F.	230 <i>O</i>	178 0	500	74	584 0	
Physical length of MQTL (bp)	1,027,255	2,126,087	842,499	678,057	1,849,184	439,757	535,015	561,709	1,002	269,367	1,041,356	141,841	329,233	384,622	970,637	370,215	2,500,571	518,268	2,133,723	3,496,026	4,327,584	866,724	3,053,826	1,542,002	494,973	1,616,003	1,181,480	3,344,224	450,631	4,128,467	
Physical end (bp) ^h	3,077,140	6,791,412	6,936,886	20,266,481	20,603,108	21,198,987	26,999,172	1,913,030	1,416,185	2,562,212	3,540,219	4,938,469	6,977,637	17,940,296	1,006,777	6,433,104	7,235,197	8,145,902	19,584,215	23,661,338	23,604,108	24,527,944	24,298,862	26,530,892	648,272	4,773,862	4,516,920	8,936,626	20,286,538	20,666,240	
Physical start (bp) ^h	4,104,395	4,665,325	7,779,385	19,588,424	18,753,924	20,759,230	26,464,157	1,351,321	1,415,183	2,292,845	2,498,863	4,796,628	6,648,404	17,555,674	36,140	6,062,889	4,734,626	7,627,634	17,450,492	20,165,312	19,276,524	23,661,220	21,245,036	24,988,890	153,299	3,157,859	3,335,440	5,592,402	19,835,907	24,794,707	
CI of projected QTL (cM) ^g	5.92	34.62	21.64	14.99	4.33	5.46	10.35	8.42	0.82	0.88	8.67	16.79	10.34	12.13	5.8	8.35	4.78	15.56	7.06	10.38	4	3.1	13.59	0.71	3.49	5.84	4.94	7.1	13.81	10.29	
No. of projected QTL ^f	1	4	3	4	3	3	2	27	3	21	4	10	11	11	1	8	2	4	2	8	1	1	9	1	1	2	2	2	4	4	
MQTL CI (cM) [¢]	5.88	11.78	3.03	7.17	1.04	0.5	0.6	0.77	0.39	1.39	2.38	3.53	2.26	0.23	5.8	1.92	3.39	2.81	2.55	3.12	3.87	3.09	4.45	0.03	3.5	3.66	3.19	5.02	6.01	4.57	
Marker Interval ^d	RM3853-RM17920	S16612S-S1873	Grh1-S12928	S2692-G366	RM430-RM18707	RM3351-E10316S	E12114S-C246	RM8075-C52026	RM7639-RM8074	RM587-RZ516	R2291-C226A	R1966-R1954	S1553-RM549	S20510-E769S	S2329-RM6222	Rc-E10534S	S4774-C1023A	C636-R1582	RM6427-RM560	RM1048-RM3753	S11177-E61009S	RM3753-RM505	R2286-R1245	RM7441-R1789	RM337-RM6925	RM5068-RM1111	RM22420-RM8020	RM547-RM8243	RM8264-RM515	RM308-S815	
Weight ^c	0.05	0.16	0.12	0.17	0.18	0.12	0.09	0.29	0.07	0.23	0.05	0.12	0.12	0.13	0.03	0.23	0.08	60.0	0.08	0.22	0.05	0.04	0.17	0.03	0.04	0.06	0.08	0.07	0.14	0.14	
MQTL Position (cM)	27.6	41.82	58.01	72.82	81.87	83.98	98.16	5.72	7.98	12.95	16.88	31.77	42.07	55.54	7.26	27.56	38	41.74	48.89	62.31	68.06	74.6	81.91	91.6	2.11	28.25	33.66	45.48	68.29	87.69	
Chr (LG) ^b								7							7										10						
MQTL ^a	MQTL5.2	MQTL5.3	MQTL5.4	MQTL5.5	MQTL5.6	MQTL5.7	MQTL5.8	MQTL6.1	MQTL6.2	MQTL6.3	MQTL6.4	MQTL6.5	MQTL6.6	MQTL6.7	MQTL7.1	MQTL7.2	MQTL7.3	MQTL7.4	MQTL7.5	MQTL7.6	MQTL7.7	MQTL7.8	MQTL7.9	MQTL7.10	MQTL8.1	MQTL8.2	MQTL8.3	MQTL8.4	MQTL8.5	MQTL8.6	

META-ANALYSIS OF QTL ASSOCIATED WITH STARCH PASTING

273

			1																						
Cloned gene ⁱ			OsAmy3D/ISA.		OsBADH2/fgr					ISA3			FL07	Dul											
No. of	candidate genes	20	978	31	135	603	1	161	233	254	263	369	53	506	18	118	30	115	155	20	55	142	133	561	112
Physical	length of MQTL (bp)	117,883	6,685,725	245,243	969,608	4,216,312	3,126	1,093,936	1,486,021	1,696,774	1,709,936	2,477,606	304,921	3,477,690	89,895	788,569	222,081	840,578	1,049,968	127,699	285,915	837,618	891,567	4,190,765	917,608
Physical	end (bp)"	26,322,207	27,559,312	19,310,989	20,774,073	6,020,349	11,808,914	12,899,549	14,650,175	18,788,978	110,138	5,490,466	17,266,561	19,150,933	21,019,533	23,103,259	4,077,273	6,260,011	27,487,870	28,804,933	712,994	2,433,453	3,582,936	19,521,002	18,319,138
Physical	start (bp)"	26,204,324	20,873,587	19,065,746	19,804,465	1,804,037	11,805,788	11,805,613	13,164,154	17,092,204	1,820,074	3,012,860	16,961,640	15,673,243	20,929,638	22,314,690	3,855,192	5,419,433	26,437,902	28,932,632	427,079	1,595,835	2,691,369	15,330,237	17,401,530
CI of	projected QTL (cM) ^g	0.295	14.98	2.63	2.04	18.31	8.29	4.9	1.3	2.39	6.78	27.25	13.4	18.05	3.91	1.67	14.39	10.85	0.71	6.12	13.17	10.46	7.00	16.22	17.84
No. of	projected QTL ^f	2	8	1	2	5	2	1	2	1	3	10	3	4	2	3	4	6	2	5	1	4	2	3	3
MQTL	CI (cM) [°]	0.18	5.19	2.61	0.12	1.61	3.81	4.9	0.91	0.37	3.92	4.16	1.52	1.38	1.19	0.04	6.64	3.52	0.43	0.48	13.17	5.08	4.25	7.03	0.53
Marbar	Interval ^d	G56-RM6019	E30441S-RZ572	RM6215-R727	EM18_5-XNpb41	R3104-R1164	RM7038-RZ206	R79-E435SB	S15670S-C472	R2272-RM24569	RM474-R10987S	S2083-R2174	S13078S-R2825	C11714-RM3510	R716-RM147	RM228-C405	RM1124-RM167	C410-RM4469	C1350-RM2064	RM6094-RM144	RM415-RM5568	RG574-RM19	RM453-RM491	S10043S-S21024S	RM511-RM277
Weight ^c		0.08	0.27	0.05	0.07	0.38	0.2	0.08	0.17	0.08	0.13	0.35	0.18	0.14	0.08	0.12	0.17	0.45	0.1	0.24	0.08	0.31	0.15	0.2	0.26
MQTL	position (cM)	97.51	109.12	118.56	132.91	63.15	73.22	89.2	102.56	110.02	3.45	28.06	44.54	57.41	65.31	76.43	22.02	29.44	95.51	106.51	6.27	20.91	33.33	41.44	48.52
Chr	(LG)					5					9						4				5				
MOTI ^a		MQTL8.7	MQTL8.8	MQTL8.9	MQTL8.10	MQTL9.1	MQTL9.2	MQTL9.3	MQTL9.4	MQTL9.5	MQTL10.1	MQTL10.2	MQTL10.3	MQTL10.4	MQTL10.5	MQTL10.6	MQTL11.1	MQTL11.2	MQTL11.3	MQTL11.4	MQTL12.1	MQTL12.2	MQTL12.3	MQTL12.4	MQTL12.5

CI of the meta-QTL present on the new consensus map; "The length of the 95% confidence interval of meta-QTL; ^fProjected QTL for the indicated meta-QTL; ^sThe length of the confidence interval of meta-QTL; ^fProjected QTL for the indicated meta-QTL; ^sThe length of the softed and the softed of the projected QTL; ^bPhysical positions are based on MSU website database (available online: http://rice.plantbiology.msu.edu/); ⁱReported genes related rice quality are based on RiceData of CNRRI (available online: http://www.ricedata.cn/gene/).

YOULIN *et al*.

QTL using maximum likelihood estimation with consideration of population size and additional QTL information. The 370 of 592 QTL for these traits onto a new consensus map were projected and integrated these QTL into 82 MQTL. Seventy-seven MQTL narrow the confidence intervals compared to projected QTL and several MQTL region of RVA which may contain qualities related gene. Such as *ALK* (Gao *et al.* 2003), *SSIVb* (Toyosawa *et al.* 2016), *Waxy* (Wx) (Tian *et al.* 2009), and so on.

So, meta-analyses can be greatly useful and advantageous for QTL analysis and candidate gene mining. For QTL meta-analysis, collecting data as much as possible are necessary as same as building a QTL mapping population, which may be useful for candidate gene identification in the subsequent study.

Acknowledgements

This research was funded by National Key R&D Program of China (2017YFD0100201), the Educational Commission of Sichuan Province, China (18ZA0507), State Key Laboratory of Rice Biology, China (160202), Southwest University of Science and Technology Ph.D. Research Fund (18zx7126), and College Students' Innovation and Entrepreneurship Training Program of Sichuan Province (18xcy074).

References

- Bao JS 2012. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice. Cereal Foods World **57**(4): 148-156.
- Bao JS., Wu YR., Hu B, Wu P, Cui HR and Shu QY 2002. QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica **128**(3): 317-324.
- Bao JS, Zheng XW, Xia YW, He P, Shu QY, Lu X, Chen Y and Zhu LH 2000. QTL mapping for the paste viscosity characteristics in rice (*Oryza sativa* L.). Theor. and Appl. Genet. **100**(2): 280-284.
- Gao Z, Zeng D, Cui X, Zhou Y, Yan M, Huang D, Li J and Qian Q 2003. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci. China Series C: Life Sci **46**(6): 661-668.
- Hanh TTT 2011. Mapping of QTL underlying traits related to quality using Koshihikari/Nanjing11 RIL population, pp. 52-53. Department of Crop Genetics and Breeding. Nanjing Agriculture University, Nanjing.
- Hsu YC, Tseng MC, Wu YP, Lin MY, Wei FJ, Hwu KK, Hsing YI and Lin YR 2014. Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross. Mol. Breed. **34**(2): 655-673.
- Zhang J, Zheng LN, Cai Y, You XM, Kong F, Wang GX, Yan HG, Jin J, Wang L, Zhang WW and Jiang L 2017. Correlation analysis and QTL mapping for starch RVA profile properties and amylose and protein contents in rice. Chinese J. of Rice Sci. **31**(1): 31-39.
- Kang HG, Park S, Matsuoka M and An GH 2005. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (*OsPPDKB*). The Plant J. **42**(6): 901-911.

- Liu XL, Wan XY, Ma XD and Wan JM 2011. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome **54**(1): 64-80.
- Ouellette LA, Reid RW, Blanchard SG and Brouwer CR 2018. LinkageMapView-rendering highresolution linkage and QTL maps. Bioinformatics **34**(2): 306-307.
- Shao X, Chen ZM, Liu ZH, Ding CQ, Tang S, Li GH., Wang SH and Ding YF 2015. QTL mapping for rice RVA properties using chromosome segment substitution lines derived from a cross between Koshihikari and 9311. Mol. Plant Breed. **13**(2): 261-268.
- Zhang SH, Peng YL, Chen J, Zhao X and Hu YG 2018. QTL Analysis of grain quality related traits in rice (*Oryza sativa* L.) DH population (CJ06 × TN1). J. Agric. Biotech. **26**(9): 1504-1513.
- THOA and NTN 2011. QTL mapping of rice quality traits using Koshihikari × Guichao2 RIL population, pp. 40-41. Department of Crop Genetics and Breeding, Nanjing Agriculture University, Nanjing.
- Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF., Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH and Li JY 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Pro. Natl. Acad. Sci. **106**(51): 21760.
- Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, Toyooka K, Sato M, Ai Y, Jane JL, Nakamura Y and Fujita N 2016. Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol. **170**(3): 1255.
- Wu YH, Huang M, Tao XX, Guo T, Chen ZQ and Xiao WM 2016. Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Mol. Genet. Genom. **291**(5): 1927-1940.
- Xu FF, Sun CX, Huang Y, Chen YL, Tong C and Bao JS 2015. QTL mapping for rice grain quality: A strategy to detect more QTL within sub-populations. Mol. Breed. **35**(4): 105.
- Yang YC, Ni DH, Song FS, Li L, Lu XZ, Li ZF and Yang JB 2012. Identification of QTL for rice starch RVA profile properties in different ecological sites. Acta Agron. Sin. **38**(2): 264-274.
- Yao XY, Wang JY, Liu J, Zhang J, Ren CY, Ma DR, Xu H and Xu ZJ 2017. Mapping quantitative trait loci associated with starch paste viscosity in rice (*Oryza sativa* L.) under different environmental conditions. Plant Breed. **136**(5): 591-602.
- Zhang QF, Zhang YD, Zhu Z, Zhao L, Zhao QY, Ling XU and Wang CL 2007. Analysis of inheritance and QTL of rice starch viscosity (RVA Profile) characteristics. Chinese J. of Rice Sci. 21(6): 591-598.
- Zheng LN, Zhang WN, Liu SJ, Chen LM, Liu X, Chen XG, Ma J, Chen WW, Zhao ZG, Jiang L and Wan JM 2012. Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred population of rice. J. Cereal Sci. **56**(2): 153-160.

(Manuscript received on 11 May, 2019: revised on 22 May, 2020)