ISSN 0258-7122 (Print), 2408-8293 (Online) Bangladesh J. Agril. Res. 46(4): 469-489, December 2021

ASSESSMENT OF INBRED LINES OF FIELD CORN FOR YIELD AND YIELD ATTRIBUTES THROUGH LINE × TESTER METHOD

A. N. M. S. KARIM¹, Z. A. TALUKDER², S. H. OMY³ R. SULTANA⁴ AND M. K. AIAM⁵

Abstract

A line × tester analysis comprising forty eight test-crosses generated by crossing 24 S₃ inbred lines derived from commercial maize hybrid 981 with two testers. Heterosis study of these crosses against two standard checks was evaluated at Bangladesh Agricultural Research Institute, Gazipur during rabi 2015-16. The objectives of the study were to estimate general and specific combining ability effects of the inbred lines and to assess the test cross performance and estimate the amount of standard-heterosis of the hybrids for grain yield and yield related characters. Highly significant genotypic differences were observed indicated wide range of variability present among them. Five lines viz. Line 11, Line 14, Line 17, Line 24 and Line 30 were good general combiner for grain yield and possessed high means. Nine crosses showed (Line $18 \times BIL22$, Line $23 \times BIL22$, Line $27 \times BIL22$ BIL22, Line 7 × BIL28, Line11 × BIL28, Line14 × BIL28, Line 24 × BIL28, Line $25 \times BIL28$ and Line $30 \times BIL28$) significant and positive specific combining ability effect for grain yield. The information on the nature of gene action with respective variety and characters might be used depending on the breeding objectives. These crosses, Line 24× BIL28 (11.40 t/ha), Line 18 × BIL22 (11.30 t/ha) and Line $25 \times BIL28$ (11.20 t/ha) showed higher yield, could be utilized in maize breeding activities. Estimation of heterosis was carried out using two commercial hybrids BARI Hybrid Maize-9 (BHM-9) and NK-40. The percent heterosis for grain yield varied from -23.39 to 4.6% against BHM-9. Among the 48 crosses, 13 crosses exhibited significant positive heterosis for grain yield.

Keywords: Assessment, line×tester, GCA, SCA, maize inbreds, heterosis.

Introduction

Maize (*Zea mays* L.) is the world's leading crop and is widely cultivated as cereal grain. It is one of the most versatile emerging crops having wider adaptability. Globally, maize is known as queen of cereals because of its highest genetic yield potential. Based on genetic structure, several types of hybrids are possible in maize; however those derived from inbred lines are usually used for commercial production. During inbreeding selection based on the performance of test cross progeny is highly useful in improving the general combining ability (GCA) of inbred lines. The general combining ability (GCA) of inbred lines can be effectively tested at an early stage during the inbreeding program. Sprague and Tatum (1942) established the theory of specific combining ability (SCA) and general combining ability (GCA) which has

^{1, 2}Senior Scientific Officer, Plant Breeding Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, ⁴Chief Scientific Officer, Plant Breeding Division, BARI, Gazipur, ^{3 & 5}Scientific Officer, Plant Breeding Division, BARI, Gazipur, Bangladesh.

been used broadly in breeding of several economic species of crop. For maize yield, they found that the significance of general combining ability was comparatively more than specific combining ability for unselected inbred lines, while specific combining ability was more significant than general combining ability for previously selected lines. Assefa et al. 2017 and Narayanamma et al. 2013 were supported this statement. Based on the test cross test, about 50% of the inbred lines can be eliminated (Singh and Chaudhary, 1979). The number of inbred lines is reduced through this process is necessary for the next step. For crop improvement combining ability has been used as an important breeding approach to exploit of hybrid vigor and parents selection. Breeder's objectives are to select hybrids on the basis of expected level of heterosis as well as specific combining ability. Combining ability is a prerequisite for developing a good hybrid maize variety. In maize breeding programs, early testing is considered an efficient approach by maize breeders to identify good performing lines by early testing which are then evaluated for grain yield and yield related traits. The present study involving a line \times tester analysis aimed at to estimate the GCA and SCA effects of S3 inbred lines of maize obtained from commercial maize hybrid 981 for grain yield and yield related traits and to evaluate the test cross performance and estimate the amount of heterosis of the hybrids for grain yield and yield related traits.

Materials and Methods

Twenty four S₃ inbred lines (as female parents) and 2 testers (as male parents) were crossed to create 48 cross combinations in rabi 2014-15 at Bangladesh Agricultural Research Institute, Gazipur. Seeds of twenty four parental lines, 48 test crosses, 2 testers (BIL22 and BIL28) and two check hybrids (BARI Hybrid Maize-9 and commercial hybrid NK-40) were sown following alpha lattice design with 2 replications in rabi 2015-16. Each hybrid planted in one row of 4 m long plot. The spacing between rows was 60 cm and plant to plant distance was 25 cm. One healthy seedling per hill was kept after proper thinning. Fertilizers were applied @ 250, 55, 110, 40, 5 and 1.5 kg/ha of N, P, K, S, Zn, B, respectively. Standard agronomic practices were followed and plant protection measures were taken as required. Ten randomly selected plants were used for recording observations on plant height, ear height, and ear length, seeds/row and 1000-grain weight. Days to tasseling, days to silking and grain yield were recorded on whole plot basis. Analysis for general combining ability and specific combining ability was carried out following the method of Kempthorne (1957).

Results and Discussion

The analysis of variance showed significant variations among the hybrids for all the characters studied indicating wide range of genetic variability among the genotypes. The analysis of variance for combining ability revealed significant differences in the variance of parents, parents vs. crosses, crosses, lines, testers and lines \times testers for several characters under studied (Table 1). Sofi and Rather (2006) and Narro *et al.* (2003) found similar genotypic difference for ear length, grain weight, grain yield and other characters in their studies.

Table I. Mean sq Gazipur	luares durinε	and estimat	tes of varia -16	nce for grain	yield, yield compo	onents and other	r characters	in maize evalu	ated at
Source	df	Days to	Days to	Plant hei	ght Ear height	Ear length	Seeds/	1000 grains	Yield
		tasseling	sılking	(cm)	(cm)	(cm)	row	weight (g)	(t/ha)
Genotypes	73	11.6^{**}	13.1^{**}	1001.8*	* 485.16**	7.5**	53.0**	2641.0^{**}	15.0^{**}
Parents	25	19.5^{**}	20.4^{**}	364.2**	* 177.48***	2.4**	16.9^{**}	1160.7^{**}	1.25^{**}
Parents vs Crosse	1	93.7**	$122.9^{*:}$	* 49860*	* 25921.5**	232.2**	2442**	135876^{**}	1002^{**}
Crosses	47	5.7**	7.0**	301.4*	* 107.62**	5.4**	21.4**	593.6**	1.25^{**}
Lines	23	5.8^{**}	7.2**	278.2*	* 160.77**	6.5**	24.4**	458.1^{**}	1.26^{**}
Testers	1	1.5	0.2	799.3*	* 283.59**	4.6^{**}	0.3	376.0^{**}	1.14^{**}
Lines x Testers	23	5.7^{**}	7.1^{**}	302.9*	* 46.81*	4.5**	19.2^{**}	738.5**	1.25^{**}
Error	73	2.1	2.8	39.43	23.13	0.7	1.8	6.1	0.17
Estimate of comp	onent c	of variance							
σ ² g (line)		0.03	0.02	-6.19	28.49	0.50	1.296	-70.11	0.01
$\sigma^2 g$ (tester)		-0.09	-0.14	10.34	4.93	0.01	-0.395	-7.55	-0.02
σ^2 gca		0.01	0.01	-0.02	0.85	0.01	0.030	-2.03	0.01
σ^2 sca		1.45	1.96	131.75	11.84	1.88	8.706	366.24	0.54
$\sigma^2 gca/\sigma^2 sca$		0.01	0.01	-0.01	0.59	0.01	0.02	-1.40	0.01
*P=0.05 and **P=	=0.01.								
Table 2. Proporti	ion con	tribution o	f lines, test	ers and their i	interactions to tot	al variance in m	ıaize		
Source	Dar tass	ys to L eling s	ays to ilking	Plant height (cm)	Ear height (cm)	Ear length (cm)	Seeds/row	1000 grain weight (g)	Yield (t/ha)
Due to line	50	.25	50.25	45.17	73.18	58.07	55.93	37.77	49.25
Due to tester	0.	56	0.05	5.64	5.27	1.80	0.03	1.35	1.94
Due to line \times	49	.19	49.70	49.19	21.55	40.14	44.05	60.89	48.81
tester									

Analysis of variance for parents found highly significant for all the traits indicating sufficient variability among them. Significant differences were also observed between interactions of parent vs crosses for all traits, indicated wide range of variability present among them. Mean sum squares due to crosses (hybrids) were highly significant for grain yield, 1000 grain weight, days to tasseling and silking, plant and ear height and ear length. This indicates that the crosses were significantly different from each other for these traits and hence, selection is possible to identify the most desirable crosses. The variance among the lines were highly significant for all the traits whereas variance among testers were significant for plant height, ear length, 1000 grains weight and grain yield. For tester GCA, showed non significant differences for days to tasseling and silking and seeds per row. The interaction of line \times tester also showed highly significant difference for all traits which was consistent with Venkatesh *et al.* (2001) and Narro *et al.* (2003).

The higher estimation of dominance variance (σ^2 sca) as compared to additive variance (σ^2 gca) for all the eight characters (Table 1) probably due to predominance of non-additive gene action which suggesting the scope of improvement of these characters through heterosis breeding for hybrid development.

The contribution of lines, testers and their interactions to total variances are presented in Table 2. The proportional contribution of lines and interactions to total variances was much higher than testers in all the traits. However, the contribution of lines was higher than the interactions to total variances for all the characters except plant height and 1000grains weight. This suggests female parent contributed maximum to total variance in maize, which was followed by interaction and the estimate of variances due to general combining ability. Testers contributed lowest to total variance, which is in conformity with Rissi *et al.* (1991).

General combining ability effects

Selection of parents with good general combining ability is a prime requisite for any successful breeding program especially for heterosis breeding. The gca effects and *per se* performance of parents (line and tester) are presented in Table 3. Both negative and positive GCA effects were observed for days to tesseling and silking. The GCA effects of parents Line 5, Line 10, Line 22 and Line 27 exhibited significant and negative GCA effects for both days to tasseling and silking. These lines could be utilized for evolving earliness. Roy *et al.* (1998), Hussain *et al.* (2003) and Uddin *et al.* (2006) also observed similar phenomenon in their study. For plant height and ear height Line1, Line7, Line12, Line13, Line14 and Line22 were found to be good general combiners while Line8, Line9 and Line19 were poor general combiners. In maize, shorter plant and ear height is desirable for lodging resistance. This result is in conformity with the findings of Habtamu and Hadji (2010), Mosa (2010) and Rahman *et al.* (2010). The lines Line 11, Line 14,

Line 17, Line 19, Line24 and Line30 exhibited significant and positive GCA effect both for ear length and seeds/row which ultimately can contribute for evolving longer ears and more seeds per row. The lines Line11, Line16, Line18, Line22, Line24 and Line29 showing positive gca effect for bold grains. Estimates of GCA effects for grain yield showed that out of the 24 inbred lines studied in line × tester cross eight exhibited positive and highly significant GCA effects while five lines exhibited negative and significant GCA effects. The lines Line2, Line11, Line14, Line17, Line18, Line19, Line24 and Line30 expressed highly significant and positive GCA effects for yield, indicated good general combiner for exploiting more positive alleles for yield. These eight lines had high mean values for grain vield (Table 3) and could be extensively utilized for evolving high vielding hybrids. In case of grain yield of maize inbred line several studies (Ahmad and Saleem, 2003; Legesse et al. 2009; Mosa, 2010) also found both positive and negative GCA effects. However Bayisa et al. (2008) did not find significant GCA effects in line×tester analysis for grain yield. Significant GCA effect for yield in maize was reported by Paul and Duara (1991) and Ivy and Hawlader (2000). As GCA is generally associated with additive gene action in inheritance of characters, the lines and testers with high GCA may be utilized in hybridization program to improve a particular trait through transgressive segregation.

Parents	D	Г	D	S	PH		Eł	ł
Tester parents	gca	mean	gca	mean	gca	mean	gca	mean
BIL22	0.13	91	0.04	94	2.89	130	1.72	43
BIL28	-0.13	89	-0.04	92	-2.89	128	-1.72	40
SE(gi)	0.20		0.22		0.91		0.69	
SE(gi-gj)	0.30		0.32		1.28		0.98	
Line parents								
Line1	0.57	86	0.81	89	-17.95**	129	-5.01**	44
Line2	0.92	86	-0.14	89	-3.70	171	-2.26	65
Line5	-1.58*	85	-2.09*	88	-7.65*	141	-3.01	56
Line7	-1.08	89	-1.69*	93	-7.95**	142	-7.01**	48
Line8	-0.83	89	-1.19	91	13.05**	151	11.24**	50
Line9	1.17	85	0.81	88	8.05**	163	8.74**	60
Line10	-2.33**	86	-2.19**	88	7.30*	162	3.49	48
Line11	-0.33	93	-0.30	96	6.80*	163	8.99**	78
Line12	-0.58	86	-0.54	88	-6.20*	136	-7.76**	46
Line13	1.17	89	1.16	92	-11.55**	150	-6.51**	50

 Table 3. General combining ability (gca) effects and mean of parents for grain yield and yield components and other characters in maize

KARIM <i>et al</i> .	

Parents	D	Г	D	S	PH		EH	ł
Tester parents	gca	mean	gca	mean	gca	mean	gca	mean
Line14	0.17	87	-0.44	90	-6.55*	133	-4.76*	55
Line15	-1.08	86	-1.04	89	-1.45	132	-0.76	51
Line16	0.87	88	0.91	90	8.05**	165	11.74**	58
Line17	1.17	86	1.10	90	9.30**	154	5.24**	64
Line18	1.42	87	1.06	89	-4.45	158	-1.26	70
Line19	1.67*	86	1.81*	88	10.55**	166	2.24	69
Line21	1.17	82	0.91	85	8.55**	151	5.74**	62
Line22	-2.02**	78	-2.26**	81	-10.95**	148	-4.26*	46
Line23	-1.23	86	-1.19	88	-4.45	156	-1.01	62
Line24	-0.18	84	0.81	87	0.80	158	-0.26	52
Line25	-0.83	86	-0.90	89	8.80**	145	3.99	53
Line27	-1.83*	86	-1.44*	87	3.55	153	-1.76	54
Line29	0.97	80	0.91	83	1.30	159	-3.76	60
Line30	0.97	85	1.56*	88	-3.20	149	-3.01	66
SE(gi)	0.74		0.79		3.14		2.40	
SE(gi-gj)	1.10		1.16		4.44		3.40	

DT = Days to tasseling	DS=Days to silking	PH=Plant height (cm)	EH = Ear height (cm)
DI Dujs to tussening,		, I II I lane noight (onl)	, DII Dui neight (eni)

			U,
Table	3.	cont'd	

Parents	Ear leng	gth (cm)	Seed	s/row	1000 grai	ns weight g)	Yield	(t/ha)
Tester parents	gca	mean	gca	mean	gca	mean	gca	mean
BIL22	0.22	12	-0.05	19	-1.98	295	-0.11	3.70
BIL28	-0.22	12	0.05	21	1.98	320	0.11	4.00
SE(gi)	0.12		0.19		0.36		0.06	
SE(gi-gj)	0.17		0.27		0.50		0.08	
Line parents								
Line1	-0.33	13	-1.49**	18	-8.85**	260	-0.23	4.15
Line 2	0.12	13	0.51	17	-6.35**	310	0.75**	5.15
Line 5	-1.66**	13	-2.49**	25	-1.35	280	-0.74*	4.75
Line 7	-1.91**	13	-2.99**	21	-21.35**	315	-0.08	5.50
Line 8	0.12	12	1.51*	16	1.15	275	-0.68*	4.03
Line 9	0.42	12	0.76	18	-7.60	305	-0.36	5.00
Line 10	-0.13	11	-2.24	16	1.15	290	0.17	3.60
Line 11	1.37**	13	3.01**	21	3.40**	315	0.47*	5.30

Parents	Ear leng	gth (cm)	Seed	ls/row	1000 grai	ns weight g)	Yield	(t/ha)
Tester parents	gca	mean	gca	mean	gca	mean	gca	mean
Line 12	-1.08**	13	-3.49**	19	-3.85	300	-1.31**	5.10
Line 13	0.32	11	2.26**	17	-11.35	275	0.46	3.50
Line 14	0.92**	13	1.51**	22	-1.35	315	0.54**	5.45
Line 15	-0.28	12	-0.99	16	-6.35	280	-0.48	3.70
Line 16	-1.78**	13	-2.49**	19	13.65**	315	0.02	5.00
Line 17	2.29**	12	4.26**	18	1.65	305	0.72**	5.40
Line 18	-2.41**	11	-2.49**	17	3.65**	315	1.01**	5.28
Line 19	1.02**	11	3.51**	17	0.65	275	0.59**	5.50
Line 21	-0.48	11	-3.24	15	-11.35**	280	-0.58*	3.70
Line 22	0.47	13	1.26*	21	6.15**	310	-0.01	4.70
Line 23	0.37	11	1.01	16	1.15	275	0.15	3.40
Line 24	2.02**	13	3.76**	23	11.15**	315	0.82**	5.45
Line 25	-1.43**	11	-2.24	15	-6.35**	270	-1.30**	3.60
Line 27	0.27	12	0.51	22	-6.35**	310	0.24	5.40
Line 29	-0.28	12	-0.49	19	3.65**	300	0.14	4.80
Line 30	1.38**	14	2.24**	25	1.15	305	0.79**	5.65
SE(gi)	0.32		0.67		1.23		0.20	
SE(gi-gj)	0.49		0.95		1.74		0.29	

*P=0.05 and **P=0.01

Specific combining ability effects

The sca effect and mean performances of the crosses are presented in Table 4. Among the 48 cross combinations, highly significant and negative sca effect were exhibited by six crosses both for days to tasseling and days to silking. in case of plant height and ear height each of five crosses showed significant and negative SCA effects for these two traits which are desirable. In maize, negative values of days to tasseling, days to silking, plant height and ear height are expected for earliness and dwarf plant type, respectively. Among the 48 cross combinations, 9 crosses showed positive sca effect for ear length, 11 crosses for seeds/row and 14 crosses for 1000 grain weight. In case of grain yield, nine crosses (Line 18 imesBIL22, Line 23 × BIL22, Line 27 × BIL22, Line 7 × BIL28, Line11 × BIL28, Line14 \times BIL28, Line 24 \times BIL28, Line 25 \times BIL28 and Line 30 \times BIL28) exhibited significant and positive SCA effects. These crosses also had high mean values for grain yield. Crosses involving both good general combiner as well as one good and other poor combiner showed high SCA effects which are due to additive \times additive and additive \times dominant gene action, respectively. These results were in agreement with the earlier findings of Das and Islam (1994) in maize.

Table 4. Specific combining	g ability (sca) i	and mean of c	rosses for gr	ain yield, its	components a	nd other ch	aracters in ma	ize
Crosses	Days to	tasseling	Days to	silking	Plant heig	ht (cm)	Ear heigh	t (cm)
	sca	mean	sca	mean	sca	mean	sca	mean
Line $1 \times BIL22$	-0.63	84	-0.29	88	-13.14**	160	-8.47**	76
Line $2 \times BIL22$	0.13	85	-0.29	88	0.61	180	1.28	86
Line $5 \times BIL22$	1.13	85	1.21	87	12.36^{**}	188	-0.97	76
Line $7 \times BIL22$	-1.88*	85	-1.79*	87	6.86	181	-6.53*	70
Line $8 \times BIL22$	-0.13	84	0.21	86	2.86	196	-0.72	83
Line $9 \times BIL22$	0.38	82	0.71	84	-0.64	165	2.28	81
Line $10 \times BIL22$	2.38*	85	2.21*	88	-7.39*	176	-6.47*	75
Line $11 \times BIL22$	-1.93*	85	-1.04	87	0.11	170	1.53	71
Line $12 \times BIL22$	1.13	84	1.71	86	13.61**	207	2.28	76
Line $13 \times BIL22$	-0.63	84	-0.54	86	-13.64**	180	-8.47**	78
Line $14 \times BIL22$	0.88	86	0.96	88	-1.64	198	0.28	98
Line $15 \times BIL22$	-0.38	85	-0.29	87	-10.64*	194	-2.72	90
Line $16 \times BIL22$	-0.13	85	0.21	87	-8.14*	191	-2.72	84
Line $17 \times BIL22$	-0.63	80	-1.04	83	12.61**	200	7.28*	93
Line $18 \times BIL22$	0.63	83	0.96	86	-9.64*	198	-1.72	76
Line $19 \times BIL22$	-1.63	85	-2.29*	88	-3.14	192	-1.22	91
Line $21 \times BIL22$	-0.13	85	-0.29	88	10.86^{**}	198	2.78	81

476

Crosses	Days to	tasseling	Days to	silking	Plant heigl	ht (cm)	Ear heigh	t (cm)
	sca	mean	sca	mean	sca	mean	sca	mean
Line $22 \times BIL22$	1.93*	83	1.86^{*}	85	-2.14	165	-6.78*	73
Line $23 \times BIL22$	1.88^{*}	85	2.21	88	-10.64*	176	-7.47*	80
Line $24 \times BIL22$	-0.88	86	-1.29	89	-0.39	177	-1.22	LL
Line $25 \times BIL22$	0.88	86	0.96	88	17.11^{**}	183	2.53	82
Line $27 \times BIL22$	-2.63**	82	-2.79**	84	3.86	180	0.78	78
Line 29 ×BIL22	-0.13	83	-0.29	86	1.11	179	2.78	83
Line $30 \times BIL22$	-0.13	84	-0.54	86	-10.89**	194	-2.97	85
Line $1 \times BIL28$	0.63	85	0.29	88	13.14^{**}	191	8.47**	96
Line $2 \times BIL28$	-0.13	85	0.29	88	-0.61	201	-1.28	98
Line $5 \times BIL28$	-1.13	85	-1.21	87	-12.36**	213	0.97	66
Line $7 \times BIL28$	1.88	86	1.79	89	-6.86	182	6.53*	81
Line $8 \times BIL28$	0.13	87	-0.21	89	-2.86	176	0.72	84
Line $9 \times BIL28$	-0.38	85	-0.71	87	0.64	189	-2.28	84
Line $10 \times BIL28$	-2.38*	81	-2.21*	84	7.39*	198	6.47*	88
Line $11 \times BIL28$	1.93*	88	1.04	91	-0.11	199	-1.53	87
Line $12 \times BIL28$	-1.13	85	-1.71	88	-13.61**	210	-2.28	95
Line $13 \times BIL28$	0.63	85	0.54	88	13.64**	183	8.47**	86
Line $14 \times BIL28$	-0.88	89	-0.96	92	1.64	178	-0.28	85

Crosses	Days tc	tasseling	Days to	silking	Plant heig	ht (cm)	Ear heigh	t (cm)
	sca	mean	sca	mean	sca	mean	sca	mean
Line $15 \times BIL28$	0.38	85	0.29	89	10.64^{**}	177	2.72	76
Line $16 \times BIL28$	0.13	85	-0.21	88	8.14	186	2.72	85
Line $17 \times BIL28$	0.63	81	1.04	84	-12.61**	191	-7.28*	06
Line $18 \times BIL28$	-0.63	84	-0.96	86	9.64*	191	1.72	85
Line $19 \times BIL28$	1.63	85	2.29*	89	3.14	186	1.22	84
Line $21 \times BIL28$	0.13	85	0.29	87	-10.86**	217	-2.78	93
Line $22 \times BIL28$	-1.93*	81	-1.86*	83	2.14	177	-6.78*	85
Line $23 \times BIL28$	-1.88*	80	-2.21*	83	10.64^{**}	198	7.47*	86
Line $24 \times BIL28$	0.88	85	1.29	89	0.39	185	1.22	81
Line $25 \times BIL28$	-0.88	85	-0.96	88	-17.11**	193	-2.53	86
Line $27 \times BIL28$	2.63**	85	2.79**	88	-3.86	185	-0.78	LL
Line $29 \times BIL28$	0.13	85	0.29	88	-1.11	177	-2.78	76
Line $30 \times BIL28$	0.13	85	0.54	89	10.89^{**}	193	2.97	80
SE(Sij)	1.03		1.12		4.44		3.40	
SE(Sij-Skl)	1.54		1.66		6.28		4.81	
*P=0.05 and **P=0.01								

KARIM et al.

Table 4. cont'd								
Crosses	Ear length	(cm)	Seeds/	row	1000 grains	wt (g)	Yield (t/ha)
	sca	mean	sca	mean	sca	mean	sca	mean
Line $1 \times BIL22$	0.58	15	1.05	27	-30.52**	325	-0.27	9.50
Line $2 \times BIL22$	-0.67	14	-2.95**	25	-3.02*	375	-0.39	10.25
Line $5 \times BIL22$	0.46	15	0.55	25	1.98	345	0.14	10.10
Line $7 \times BIL22$	-0.89	15	0.05	31	1.98	370	-0.72**	10.20
Line $8 \times BIL22$	-0.37	14	-1.95*	26	-3.02*	365	-0.42	9.60
Line $9 \times BIL22$	0.53	13	1.80^{*}	25	15.73**	365	0.26	9.53
Line $10 \times BIL22$	-0.02	12	0.80	25	3.98*	345	0.33	9.90
Line $11 \times BIL22$	-1.68**	14	-3.55**	25	-15.73**	350	-0.83**	10.15
Line $12 \times BIL22$	0.77	14	-0.45	26	-5.52**	350	0.21	9.10
Line $13 \times BIL22$	1.07^{*}	16	3.70**	32	1.98	360	-0.41	10.16
Line $14 \times BIL22$	-0.97*	16	-2.95**	31	1.98	360	-0.84**	10.30
Line $15 \times BIL22$	-0.27	15	-1.35	26	-3.02*	345	-0.32	9.00
Line $16 \times BIL22$	0.23	15	-0.45	26	-13.02**	370	-0.37	10.50
Line $17 \times BIL22$	1.66^{**}	15	1.80^{**}	28	-8.02**	340	-0.07	10.05
Line $18 \times BIL22$	1.39^{**}	18	2.55**	34	-13.02**	370	0.94^{**}	11.30
Line $19 \times BIL22$	-2.07	14	-1.45	27	1.98	355	-0.25	9.85
Line $21 \times BIL22$	-0.17	15	-0.70	24	0.98	345	-0.26	9.20

479

Crosses	Ear length	(cm)	Seeds/	row	1000 grains	wt (g)	Yield (t/ha)
	sca	mean	sca	mean	sca	mean	sca	mean
Line $22 \times BIL22$	0.48	13	1.80^{*}	25	0.48	355	0.11	9.00
Line $23 \times BIL22$	1.48^{**}	15	2.55**	26	14.48^{**}	360	0.95**	10.45
Line $24 \times BIL22$	0.03	17	-2.20**	30	-5.52**	355	-0.83**	10.39
Line $25 \times BIL22$	-0.98	15	0.80	26	-6.98**	345	-0.80**	10.00
Line $27 \times BIL22$	1.22^{**}	17	1.95*	32	13.02^{**}	360	0.94^{**}	11.00
Line 29 ×BIL22	0.13	14	1.55	25	2.98	345	0.26	9.20
Line $30 \times BIL22$	-0.17	16	-2.30**	29	-15.52	365	-0.74**	10.45
Line $1 \times BIL28$	-0.58	14	-1.05	25	30.52**	365	0.27	9.65
Line $2 \times BIL28$	0.67	13	2.95**	27	3.02*	385	0.39	10.60
Line $5 \times BIL28$	-0.46	19	-0.55	34	-1.98	370	-0.14	10.65
Line $7 \times BIL28$	0.89	15	-0.05	30	-1.98	390	0.72**	11.10
Line $8 \times BIL28$	0.37	12	1.95*	26	3.02*	345	0.42	8.35
Line $9 \times BIL28$	-0.53	13	-1.80*	25	-15.73**	390	-0.26	9.85
Line $10 \times BIL28$	0.02	14	-0.80	30	-3.98*	365	-0.33	10.34
Line $11 \times BIL28$	1.68^{**}	18	3.55**	33	15.73**	375	0.83**	11.06
Line $12 \times BIL28$	-0.77	14	0.45	24	5.52**	355	-0.21	9.36
Line $13 \times BIL28$	-1.07*	14	-3.70**	25	-1.98	345	0.41	10.10
Line $14 \times BIL28$	0.97*	18	2.95**	34	-1.98	365	0.84^{**}	11.10

480

Ear length	(cm)	Seeds/	row	1000 grains v	wt (g)	Yield (1	/ha)
sca	mean	sca	mean	sca	mean	sca	mean
0.27	14	1.35	24	3.02*	350	0.32	9.10
-0.23	18	0.45	33	13.02^{**}	375	0.37	11.19
-1.66**	15	-1.80*	28	8.02**	350	0.07	9.52
-1.39**	17	-2.55**	31	13.02^{**}	360	-0.94**	10.00
2.07**	17	1.45	32	-1.98	365	0.25	10.70
0.17	15	0.70	26	-0.98	350	0.26	9.30
-0.48	12	-1.80*	25	-0.48	345	-0.11	8.72
-1.48**	14	-2.55**	26	-14.48**	350	-0.95**	9.31
-0.03	16	2.20**	30	5.52**	380	0.83^{**}	11.40
0.98^{**}	15	-0.80	29	6.98**	400	0.80^{**}	11.20
-1.22**	14	-1.95*	26	-13.02**	350	-0.94**	10.50
-0.13	15	-1.55	25	-2.98	355	-0.26	9.35
0.17	14	2.30**	30	15.52**	390	0.74^{**}	11.05
0.49		0.95		1.74		0.29	
0.74		1.34		2.46		0.41	
	Ear length sca 0.27 -0.23 -1.66** -1.39** -1.39** 0.17 -0.48 -1.48** -0.48 -1.48** -0.13 0.98** -1.22** -0.13 0.98** -0.13 0.17 0.49 0.17 0.17	Ear length (cm) sca mean 0.27 14 0.27 14 -0.23 18 -1.66** 15 -1.39** 17 -1.39** 17 2.07** 17 2.07** 17 0.17 15 -1.39** 17 2.07** 17 0.17 15 -1.48** 14 -0.38 16 0.98** 15 -1.22** 14 -0.13 15 0.17 14 0.17 14 0.18 15 0.17 14 0.17 14 0.17 14 0.17 14 0.17 14 0.17 14 0.17 14 0.49 15 0.49 14	Ear length (cm)Seeds/scameanSeeds/scameansca 0.27 14 1.35 0.27 14 1.35 -0.23 18 0.45 $-1.66**$ 15 $-1.80*$ $-1.56**$ 17 $-2.55**$ $-1.39**$ 17 $-2.55**$ $-1.39**$ 17 $-2.55**$ -0.48 12 $-1.46*$ 0.17 15 0.70 -0.48 12 $-1.80*$ -0.48 12 $-1.80*$ -0.48 16 $2.20**$ -0.48 16 $2.20**$ $0.98**$ 16 $2.20**$ $0.98**$ 16 $2.30**$ 0.17 14 $2.30**$ 0.17 14 $2.30**$ 0.17 14 $2.30**$ 0.17 0.95 0.95 0.74 0.95	Ear length (cm)Seeds/rowscameanSeeds/rowscameanscamean 0.27 14 1.35 24 0.27 18 0.45 33 -0.23 18 0.45 33 $-1.66**$ 15 $-1.80*$ 28 $-1.39**$ 17 $-2.55**$ 31 $-1.39**$ 17 $-2.55**$ 31 $-1.39**$ 17 1.45 26 $-1.39**$ 17 1.45 26 0.17 15 0.70 26 0.17 15 $-1.80*$ 26 $0.18**$ 14 $-2.55**$ 26 0.03 16 $2.20**$ 30 $0.98**$ 15 -0.80 29 0.13 15 $-1.95*$ 26 0.13 15 $-1.95*$ 26 0.17 14 $2.30**$ 30 0.17 14 $2.30**$ 30 0.17 14 $2.30**$ 30 0.49 0.95 -1.34	Ear length (cm) Seeds/row 1000 grains sca mean sca 1000 grains sca mean sca 1000 grains sca mean sca mean sca 0.27 14 1.35 24 3.02* -0.23 18 0.45 33 13.02** -0.23 18 0.45 33 13.02** -1.66** 17 -2.55** 31 13.02** -1.39** 17 -2.55** 31 13.02** 0.17 15 0.70 26 -0.98 0.17 15 0.70 26 -0.48 0.148** 14 -2.55** 30 5.52** 0.148** 14 -2.55** 30 5.52** 0.18** 16 2.20** 30 5.52** 0.18** 1.148** -1.13.02** -1.14.48** 0.17 14 -2.55** 26 -14.48** 0.18** </td <td>Ear length (cm) Seeds/row 1000 grains wt (g) sca mean sca mean sca mean 0.27 14 1.35 24 3.02* 350 0.27 14 1.35 24 3.02* 350 0.23 18 0.45 33 13.02** 350 -0.23 18 0.45 33 13.02** 360 -1.56** 17 -2.55** 31 13.02** 360 -1.39** 17 -2.55** 31 13.02** 360 0.17 15 0.70 26 -0.98 360 0.17 15 0.46 25 -0.48 360 0.17 15 0.48 360 365 360 0.148** 16 2.55** 30 365 360 0.98** 16 2.55** 360 366 366 0.98** 16 2.55** 360 366 366<td>Ear length (cm) Seeds/row 1000 grains wt (g) Yield (1 sca mean sca mean sca yield (1 sca mean sca mean sca yield (1 0.27 14 1.35 24 3.02* 350 0.32 0.27 14 1.35 24 3.02* 350 0.32 1.05 14 1.35 28 8.02** 350 0.32 1.166** 15 -1.80* 28 8.02** 350 0.37 2.07** 17 -2.55** 31 13.02** 360 0.94** 2.07** 17 1.45 32 -1.98 365 0.26 0.17 15 0.70 26 -0.48 365 0.11 -1.48** 36 0.76 0.93** 0.11 0.14 -1.48** 14 2.55** 360 0.94** 0.11 -1.48** 14 2.55** <td< td=""></td<></td></td>	Ear length (cm) Seeds/row 1000 grains wt (g) sca mean sca mean sca mean 0.27 14 1.35 24 3.02* 350 0.27 14 1.35 24 3.02* 350 0.23 18 0.45 33 13.02** 350 -0.23 18 0.45 33 13.02** 360 -1.56** 17 -2.55** 31 13.02** 360 -1.39** 17 -2.55** 31 13.02** 360 0.17 15 0.70 26 -0.98 360 0.17 15 0.46 25 -0.48 360 0.17 15 0.48 360 365 360 0.148** 16 2.55** 30 365 360 0.98** 16 2.55** 360 366 366 0.98** 16 2.55** 360 366 366 <td>Ear length (cm) Seeds/row 1000 grains wt (g) Yield (1 sca mean sca mean sca yield (1 sca mean sca mean sca yield (1 0.27 14 1.35 24 3.02* 350 0.32 0.27 14 1.35 24 3.02* 350 0.32 1.05 14 1.35 28 8.02** 350 0.32 1.166** 15 -1.80* 28 8.02** 350 0.37 2.07** 17 -2.55** 31 13.02** 360 0.94** 2.07** 17 1.45 32 -1.98 365 0.26 0.17 15 0.70 26 -0.48 365 0.11 -1.48** 36 0.76 0.93** 0.11 0.14 -1.48** 14 2.55** 360 0.94** 0.11 -1.48** 14 2.55** <td< td=""></td<></td>	Ear length (cm) Seeds/row 1000 grains wt (g) Yield (1 sca mean sca mean sca yield (1 sca mean sca mean sca yield (1 0.27 14 1.35 24 3.02* 350 0.32 0.27 14 1.35 24 3.02* 350 0.32 1.05 14 1.35 28 8.02** 350 0.32 1.166** 15 -1.80* 28 8.02** 350 0.37 2.07** 17 -2.55** 31 13.02** 360 0.94** 2.07** 17 1.45 32 -1.98 365 0.26 0.17 15 0.70 26 -0.48 365 0.11 -1.48** 36 0.76 0.93** 0.11 0.14 -1.48** 14 2.55** 360 0.94** 0.11 -1.48** 14 2.55** <td< td=""></td<>

Table 5. Heterosis of the	crosses over N	VK-40 for di	iferent chara	acters in mai	ze				482
Crosses	DT	DS	Hd	EH	Ear Length	Seeds/row	1000 grains wt (g)	Yield (t/ha)	
Line $1 \times BIL22$	3.7^{**}	4.8**	-12.1**	-3.8**	0.0	-6.9**	-16.7**	-10.8**	
Line $2 \times BIL22$	4.9**	4.8**	-1.1	8.9**	-6.7**	-13.8**	-3.8**	-3.8**	
Line $5 \times BIL22$	4.9**	3.6**	3.3**	-3.8**	0.0	-13.8**	-11.5**	-5.2**	
Line $7 \times BIL22$	4.9**	3.6**	-0.5	-11.4**	0.0	6.9**	-5.1**	-4.2**	
Line $8 \times BIL22$	3.7**	2.4**	7.7**	5.1^{**}	-6.7**	-10.3**	-6.4**	-9.9**	
Line $9 \times BIL22$	1.2^{**}	0.0	-9.3**	2.5	-13.3**	-13.8**	-6.4**	-10.5**	
Line $10 \times BIL22$	4.9**	4.8**	-3.3**	-5.1**	-20.0**	-13.8**	-11.5**	-7.0**	
Line $11 \times BIL22$	4.9**	3.6**	-6.6**	-10.1**	-6.7**	-13.8**	-10.3**	-4.7**	
Line $12 \times BIL22$	3.7**	2.4**	13.7^{**}	22.8**	-6.7**	-10.3**	-10.3**	-14.6**	
Line $13 \times BIL22$	3.7**	2.4**	-1.1	-1.3	6.7**	10.3^{**}	-7.7**	-4.6**	
Line $14 \times BIL22$	6.2^{**}	4.8^{**}	8.8**	24.1^{**}	6.7**	6.9**	-7.7**	-3.3**	
Line $15 \times BIL22$	4.9**	3.6**	6.6**	13.9^{**}	0.0	-10.3**	-11.5**	-15.5**	
Line $16 \times BIL22$	4.9**	3.6**	4.9**	6.3**	0.0	-10.3**	-5.1**	-1.4	
Line $17 \times BIL22$	-1.2**	-1.2**	9.9**	17.7^{**}	0.0	-3.4*	-12.8**	-5.6**	
Line $18 \times BIL22$	2.5**	2.4**	8.8**	22.8**	20.0**	17.2**	-5.1**	6.1^{**}	
Line $19 \times BIL22$	4.9**	4.8**	5.5**	15.2**	-6.7**	-6.9**	-9.0**	-7.5**	k
Line $21 \times BIL22$	4.9**	4.8**	8.8**	2.5	0.0	-17.2**	-11.5**	-13.6**	KAR
Line $22 \times BIL22$	2.5**	1.2^{**}	-9.3**	-7.6**	-13.3**	-13.8**	-9.0**	-15.5**	IM e
Line $23 \times BIL22$	4.9**	4.8^{**}	-3.3**	1.3	0.0	-10.3**	-7.7**	-1.9	t al.

ize
ma
in
ers
act
hai
It
rer
iffe
с di
fo
1 0
ΝŔ
er
0
ses
ros
e c
th
o
osis
ter
Het
i
ble
Tal
-

	-	_						
Crosses	DT	DS	Hd	EH	Ear Length	Seeds/row	1000 grains wt (g)	Yield (t/ha)
Line $24 \times BIL22$	6.2^{**}	6.0^{**}	-2.7**	-2.5	13.3^{**}	3.4*	-9.0**	-2.4*
Line $25 \times BIL22$	6.2^{**}	4.8**	0.5	3.8**	0.0	-10.3**	-11.5**	-6.1**
Line $27 \times BIL22$	1.2^{**}	0.0	-1.1	-1.3	13.3^{**}	10.3^{**}	-7.7**	3.3**
Line 29 ×BIL22	2.5**	2.4**	-1.6	5.1^{**}	-6.7**	-13.8**	-11.5**	-13.6**
Line $30 \times BIL22$	3.7**	2.4**	6.6**	7.6**	6.7^{**}	0.0	-6.4**	-1.9
Line $1 \times BIL28$	4.9**	4.8**	4.9**	21.5^{**}	-6.7**	-13.8**	-6.4**	-9.4**
Line $2 \times BIL28$	4.9**	4.8**	10.4^{**}	24.1**	-13.3**	-6.9**	-1.3*	-0.5
Line $5 \times BIL28$	4.9**	3.6**	17.0^{**}	25.3**	26.7^{**}	17.2^{**}	-5.1**	0.0
Line $7 \times BIL28$	6.2^{**}	6.0^{**}	0.0	2.5	0.0	3.4*	0.0	4.2**
Line $8 \times BIL28$	7.4**	6.0^{**}	-3.3**	6.3**	-20.0**	-10.3**	-11.5**	-21.6**
Line $9 \times BIL28$	4.9**	3.6**	3.8**	6.3**	-13.3**	-13.8**	0.0	-7.5**
Line $10 \times BIL28$	0.0	0.0	8.8**	11.4^{**}	-6.7**	3.4*	-6.4**	-2.9**
Line $11 \times BIL28$	8.6**	8.3**	9.3**	10.1^{**}	20.0^{**}	13.8^{**}	-3.8**	3.8**
Line $12 \times BIL28$	4.9**	4.8**	15.4**	20.3**	-6.7**	-17.2**	-9.0**	-12.1**
Line $13 \times BIL28$	4.9**	4.8**	0.5	8.9**	-6.7**	-13.8**	-11.5**	-5.2**
Line $14 \times BIL28$	9.88**	9.5**	-2.2*	7.6**	20.0^{**}	17.2^{**}	-6.4**	4.2**
Line $15 \times BIL28$	4.9**	6.0^{**}	-2.7**	-3.8**	-6.7**	-17.2**	-10.3**	-14.6
Line $16 \times BIL28$	4.9**	4.8**	2.2*	7.6**	20.0^{**}	13.8^{**}	-3.8**	5.1^{**}
Line $17 \times BIL28$	0.0	0.0	4.9**	13.9**	0.0	-3.4*	-10.3**	-10.6**

Crosses	DT	DS	Hd	EH	Ear Length	Seeds/row	1000 grains wt (g)	Yield (t/ha)
Line $18 \times BIL28$	3.7^{**}	2.4**	4.9**	7.6**	13.3**	6.9**	-7.7**	-6.1**
Line $19 \times BIL28$	4.9**	6.0^{**}	2.2*	6.3**	13.3^{**}	10.3^{**}	-6.4**	0.5
Line $21 \times BIL28$	4.9**	3.6**	19.2^{**}	17.7^{**}	0.0	-10.3**	-10.3**	-12.7**
Line $22 \times BIL28$	0.0	-1.2**	-2.7**	7.6**	-20.0**	-13.8**	-11.5**	-18.1**
Line $23 \times BIL28$	-1.2**	-1.2**	8.8**	8.9**	-6.7**	-10.3**	-10.3**	-12.6**
Line $24 \times BIL28$	4.9**	6.0**	1.6	2.5	6.7**	3.4*	-2.6**	7.0**
Line $25 \times BIL28$	4.9**	4.8^{**}	6.0^{**}	8.9**	0.0	0.0	2.6**	5.2**
Line $27 \times BIL28$	4.9**	4.8^{**}	1.6^{**}	-2.5	-6.7**	-10.3**	-10.3**	-1.4
Line $29 \times BIL28$	4.9**	4.8**	-2.7**	-3.8**	0.0	-13.8**	-9.0**	-12.2**
Line $30 \times BIL28$	4.9**	6.0**	6.0^{**}	1.3	-6.7**	3.4*	0.0	3.8**
Mean	4.24	3.72	3.07	6.86	-0.42	-4.17	-7.64	-5.58
Minimum	-1.23	-1.19	-12.09	-11.39	-20.00	-17.24	-16.67	-21.60
Maximum	9.88	9.52	19.23	25.32	26.67	17.24	2.56	7.04
Std. Error	0.32	0.34	0.97	1.36	1.59	1.54	0.57	1.02
CD _(0.05)	0.64	0.68	1.96	2.74	3.20	3.10	1.14	2.06
$CD_{(0.01)}$	0.86	06.0	2.62	3.65	4.28	4.14	1.52	2.75
DT = Days to tasseling, D ,	S=Days to silk	ing, PH= Pla	nt height (cm), EH= Ear h	eight (cm)			

KARIM et al.

Table 6. Heterosis of th	he crosses o	ver BHM-9	for different e	characters ir	ı maize			
Crosses	DT	DS	Hd	EH	Ear Length	Seed/row	1000 grains wt (g)	Yield (t/ha)
Line $1 \times BIL22$	-3.4**	-1.1**	-20.0**	-20.0**	-16.7**	-18.2**	-9.7**	-12.8**
Line $2 \times BIL22$	-2.3**	-1.1**	-10.0**	-9.5**	-22.2**	-24.2**	4.2**	-6.0**
Line $5 \times BIL22$	-2.3**	-2.2**	-6.0**	-20.0**	-16.7**	-24.2**	-4.2**	-7.3**
Line $7 \times BIL22$	-2.3**	-2.2**	-9.5**	-26.3**	-16.7**	-6.1**	2.8**	-6.4**
Line $8 \times BIL22$	-3.4**	-3.4**	-2.0*	-12.6**	-22.2**	-21.2**	1.4*	-11.9**
Line $9 \times BIL22$	-5.7**	-5.6**	-17.5**	-14.7**	-27.8**	-24.2**	1.4*	-12.6**
Line $10 \times BIL22$	-2.3**	-1.1**	-12.0**	-21.1**	-33.3**	-24.2**	-4.2**	-9.2**
Line $11 \times BIL22$	-2.3**	-2.2**	-15.0**	-25.3**	-22.2**	-24.2**	-2.8**	-6.9**
Line $12 \times BIL22$	-3.4**	-3.4**	3.5**	2.1	-22.2**	-21.2**	-2.8	-16.5**
Line $13 \times BIL22$	-3.4**	-3.4**	-10.0**	-17.9**	-11.1**	-3.0*	0.0	-6.8**
Line $14 \times BIL22$	-1.1**	-1.1**	-1.0	3.2**	-11.1**	-6.1**	0.0	-5.5**
Line $15 \times BIL22$	-2.3**	-2.2**	-3.0**	-5.3**	-16.7**	-21.2**	-4.2**	-17.4**
Line $16 \times BIL22$	-2.3**	-2.2**	-4.5**	-11.6**	-16.7**	-21.2**	2.8**	-3.7**
Line $17 \times BIL22$	-8.0**	-6.7**	0.0	-2.1	-16.7**	-15.2**	-5.6**	-7.8
Line $18 \times BIL22$	-4.6**	-3.4**	-1.0	2.1	0.0	3.0*	2.8**	3.7**
Line $19 \times BIL22$	-2.3**	-1.1**	-4.0**	-4.2**	-22.2**	-18.2**	-1.4*	-9.6**
Line $21 \times BIL22$	-2.3**	-1.1**	-1.0	-14.7**	-16.7**	-27.3**	-4.2**	-15.6**
Line $22 \times BIL22$	-4.6**	-4.5**	-17.5**	-23.2**	-27.8**	-24.2**	-1.4*	-17.4**
Line $23 \times BIL22$	-2.3**	-1.1**	-12.0**	-15.8**	-16.7**	-21.2	0.0	-4.1**

Crosses	DT	DS	Hd	EH	Ear Length	Seed/row	1000 grains wt (g)	Yield (t/ha)
Line $24 \times BIL22$	-1.1**	0.0	-11.5**	-18.9**	-5.6**	-9.1**	-1.4	-4.7**
Line $25 \times BIL22$	-1.1**	-1.1**	-8.5**	-13.7**	-16.7**	-21.2**	-4.2**	-8.3**
Line $27 \times BIL22$	-5.7**	-5.6**	-10.0**	-17.9**	-5.6**	-3.0*	0.0	0.9
Line 29 ×BIL22	-4.6**	-3.4**	-10.5**	-12.6**	-22.2**	-24.2**	-4.2**	-15.6**
Line $30 \times BIL22$	-3.4**	-3.4**	-3.0**	-10.5**	-11.1**	-12.1**	1.4*	-4.1**
Line $1 \times BIL28$	-2.3**	-1.1**	-4.5**	1.1	-22.2**	-24.2**	1.4*	-11.5**
Line $2 \times BIL28$	-2.3**	-1.1**	0.5	3.2**	-27.8**	-18.2**	6.9**	-2.8**
Line $5 \times BIL28$	-2.3**	-2.2**	6.5**	4.2**	5.6**	3.0*	2.8**	-2.3*
Line $7 \times BIL28$	-1.1**	0.0	-9.0**	-14.7**	-16.7**	-9.1**	8.3**	1.8
Line $8 \times BIL28$	0.0	0.0	-12.0**	-11.6**	-33.3**	-21.2**	-4.2**	-23.4**
Line $9 \times BIL28$	-2.3**	-2.2**	-5.5**	-11.6**	-27.8**	-24.2**	8.3**	-9.6**
Line $10 \times BIL28$	-6.9**	-5.6**	-1.0	-7.4**	-22.2**	-9.1**	1.4*	-5.1**
Line $11 \times BIL28$	1.1^{**}	2.2**	-0.5	-8.4**	0.0	0.0	4.2**	1.5
Line $12 \times BIL28$	-2.3**	-1.1**	5.0**	0.0	-22.2**	-27.3**	-1.4*	-14.1**
Line $13 \times BIL28$	-2.3**	-1.1**	-8.5**	-9.5**	-22.2**	-24.2**	-4.2**	-7.3**
Line $14 \times BIL28$	2.3**	3.4**	-11.0**	-10.5**	0.0	3.0*	1.4^{*}	1.8
Line $15 \times BIL28$	-2.3**	0.0	-11.5**	-20.0**	-22.2**	-27.3**	-2.8**	-16.5**
Line $16 \times BIL28$	-2.3**	-1.1**	-7.0**	-10.5**	0.0	0.0	4.2**	2.7**
Line $17 \times BIL28$	-6.9**	-5.6**	-4.5**	-5.3**	-16.7**	-15.2**	-2.8**	-12.7**

486

Crosses	DT	DS	Hd	EH	Ear Length	Seed/row	1000 grains wt (g)	Yield (t/ha)
Line $18 \times BIL28$	-3.4**	-3.4**	-4.5**	-10.5**	-5.6**	-6.1**	0.0	-8.3**
Line $19 \times BIL28$	-2.3**	0.0	-7.0**	-11.6**	-5.6**	-3.0**	1.4^{*}	-1.8
Line $21 \times BIL28$	-2.3**	-2.2**	8.5**	-2.1	-16.7**	-21.2**	-2.8**	-14.7**
Line $22 \times BIL28$	-6.9**	-6.7**	-11.5**	-10.5**	-33.3**	-24.2**	-4.2**	-20.0**
Line $23 \times BIL28$	-8.0**	-6.7**	-1.0	-9.5**	-22.2**	-21.2**	-2.8**	-14.6**
Line $24 \times BIL28$	-2.3**	0.0	-7.5**	-14.7**	-11.1**	-9.1**	5.6**	4.6**
Line $25 \times BIL28$	-2.3**	-1.1**	-3.5**	-9.5**	-16.7**	-12.1**	11.1^{**}	2.8**
Line $27 \times BIL28$	-2.3**	-1.1**	-7.5**	-18.9**	-22.2**	-21.2**	-2.8**	-3.7**
Line $29 \times BIL28$	-2.3**	-1.1**	-11.5**	-20.0**	-16.7**	-24.2**	-1.4*	-14.2**
Line $30 \times BIL28$	-2.3**	0.0	-3.5**	-15.8**	-22.2**	-9.1**	8.3**	1.4
Mean	-2.95	-2.11	-6.21	-11.14	-17.01	-15.78	0.06	-7.74
Min	-8.05	-6.74	-20.00	-26.32	-33.33	-27.27	-9.72	-23.39
Max	2.30	3.37	8.50	4.21	5.56	3.03	11.11	4.59
SE	0.30	0.32	0.89	1.13	1.33	1.36	0.61	1.00
CD _(0.05)	0.60	0.64	1.78	2.28	2.67	2.73	1.24	2.01
CD _(0.01)	0.80	0.85	2.38	3.04	3.56	3.64	1.65	2.68

Heterosis

The standard heterosis expressed by the F_1 hybrids over the two standard checks namely NK-40 and BHM-9 (commercial hybrid)) for different characters are presented in Table 5 and 6. The percent of heterosis in F_1 hybrids varied from character to character and cross to cross.

For grain yield, the percent heterosis for kernel yield varied from -21.60 to 7.0% when compared with standard commercial variety of NK-40 (10.65 t/ha). Among the 48 F₁s, nine crosses exhibited significant positive heterosis for kernel yield (Table 5). The highest heterosis 7.0% was exhibited by the cross Line $24 \times BIL28$ followed by Line $18 \times BIL22$ (6.1%) and Line $25 \times BIL28$ (5.2%). Talukder *et al.* (2016) found -51.39 to 12.53% heterosis when used NK-40 as a check in their study.

When BHM-9 used as check (10.90 t/ha), the percent heterosis for kernel yield varied from -23.39 to 4.6%. Karim *et al.* (2018) found -13.04 to 5.25% heterosis in their study. It showed that among the 48 F₁s, four crosses exhibited significant positive heterosis for kernel yield (Table 6). The highest heterosis 4.6% was exhibited by the cross Line $24 \times BIL28$ followed by Line $18 \times BIL22$ (3.7%) and Line $25 \times BIL28$ (2.8%).

Conclusion

Five lines viz., Line 11, Line 14, Line 14, Line 17 and Line 30 were good general combiner for grain yield. Nine (Line 18 × BIL22, Line 23 × BIL22, Line 27 × BIL22, Line 7 × BIL28, Line 14 × BIL28, Line 24 × Line BIL28, BIL 25 × BIL28 and BIL 30 × BIL28) crosses showed significant and specific combining ability effect for grain yield. Considering SCA and GCA value and heterosis study promising inbred (S₆) lines could be developed which may be utilized for future maize breeding work.

References

- Ahmad, A. and M. Saleem. 2003. Combining ability analysis in maize (Zea mays L.) International J. Agric. Biol. 5(3):1-6.
- Assefa, T., H. Zeleke, T. Afriye and P. Otyama. 2017. Line × tester analysis of tropical high land maize (*Zea mays* L.) inbred lines top crossed with three East African maize populations. *American J. Plant Sci.* 8(2):126-136.
- Bayisa, A., M. Hussien and Z. Habtamu. 2008. Combining ability of transitional high land maize inbred lines. *East African J. Sci.* **2**(1):19-24.
- Das, U.R. and M.H. Islam. 1994. Combing ability and genetic studies for grain yield and its components in maize (*Zea mays L.*). *Bangladesh J. Pl. Breed. Genet.* **7**(2):41-47.
- Habtamu, Z. and T. Hadji. 2010. Combining ability analysis for yield and yield related traits in quality protein maize (*Zea mays L.*) inbred lines. *International J. Biol. Sci.* 2(7):87-97.
- Hussain, S.A., M. Amiruzzaman and Z. Hossain. 2003. Combining ability estimates in maize. *Bangladesh J. Agril. Res.* 28(3):435-440.

- Ivy, N.A. and M.S. Howlader. 2000. Combining ability in maize. Bangladesh J. Agril. Res. 25: 385-392.
- Kempthorne, O. 1957. An Introduction to Genetic Statistics. New York: John Wiley & Sons, Inc. London: Chapman & Hall Ltd. pp. 458-471.
- Karim, A.N.M.S., Ahmed, S., Akhi, A.H., Talukder, M.Z.A. and T.A. Mujahidi. 2018. Combining ability and heterosis study in maize (*Zea mays L.*) hybrids at different environments in Bangladesh. *Bangladesh J. Agril. Res.* 43(1):125-134.
- Legesse, B.W., K.V. Pixley, A.A. Mybur, S.A. Twumasi and A.M. Botha, 2009. Combining ability and heterotic grouping of highland transition maize inbred lines. African Crop Sci. Conference Proceedings. **9**: 487-491.
- Malik S.I., H.N. Malik, N.M. Minhas and M. Munir. 2004. General and specific combining ability studies in maize diallel crosses. *International J. Agric. Biology*. **6**(5): 856-859
- Mosa, H.E. 2010. Estimation of combining ability of maize Inbred lines using top cross matingdesign. *Kafer El-Sheikh University. J. Agric. Res.* **36**(1):1-16.
- Narayanamma, V., C. Gowda, M. Sriramulu, M. Ghaffar and H. Sharma. 2013. Nature of gene action and maternal effects for Pod Borer, *Helicoverpa armigera* resistance and grain yield in Chickpea, *Cicer arietinum. American J. Plant Sci.* 4(1): 26-37.
- Narro, L., S. Pandey, J. Crossa, C.D. Leon and F. Salazar. 2003. Using line × tester interaction for the formation of yellow maize synthetics tolerance to acid soils. *Crop Sci.* **43**: 1717-1728.
- Paul, S.K. and R.K. Duara. 1991. Combining ability studies in maize (Zea mays L.). Intl. J. Tropics. Agric. 9(4):250-254.
- Rahman, H., Z. Arifuddin, S. Shah, A. Shah, M. Iqbal and I.H. Khalil. 2010. Evaluations of maize S2 lines in test cross combinations I: flowering and morphological traits. *Pakistan J. Bot.* 42(3):1619-1627.
- Rissi, R.D., A.R. Hallauer and R. R. De. 1991. Evaluation of four testers for evaluating maize lines in a hybrid development program. *Revista Brasllelia de Genetica*. 14(2):467-481.
- Roy, N.C., S.U. Ahmed, A. S. Hussain and M.M. Hoque. 1998. Heterosis and combining ability analysis in maize (*Zea mays L.*). *Bangladesh J. Pl. Breed. Genet.* 11(1&2):35-41.
- Singh, R.K. and B.D. Chaudhary. 1979. Biometrical methods in quantitative genetic analysis. Kalyani publs. New Delhi, Ludhiana, India. pp. 127-223.
- Sofi, P. and A.G. Rather. 2006. Genetic analysis of yield trails in local and CIMMYT inbred line crosses using Line × tester analysis in maize (*Zea mays* L.). *Asian J. Plant Sci.* **5** (6):1039-1042.
- Sprague, G.F. and L.A. Tatum. 1942. General versus specific combining ability in single crosses of corn. *American J. Soc. Agron.* **37**:923-928.
- Talukder, M.Z.A., A.N.M.S. Karim, S. Ahmed and M. Amiruzzaman. 2016. Combining ability and heterosis on yield and its component traits in maize (*Zea mays L.*). *Bangladesh J. Agril. Res.* 41(3):565-577.
- Uddin, M.S., F. Khatun, S. Ahmed, M. R. Ali and S.A. Bagum. 2006. Heterosis and Combining Ability in Field Corn (Zea mays L.). Bangladesh J. Bot. 35 (2):109-116.
- Venkatesh, S., N.N. Singh and N.P. Gupta. 2001. Early generation identification and utilization of potential inbred lines in modified single cross hybrids of maize (Zea mays L.). Indian J. Genet. 61(4):353-355.