ISSN 0258-7122 Bangladesh J. Agril. Res. 37(3): 465-472, September 2012

SCREENING OF MUSKMELON (Cucumis melo L.) GERMPLASM AGAINST SALINITY

M. A. MALEK, M. OBAIDUL ISLAM, M. MAMTAZUL HAQUE AND M. K. SULTAN

Abstract

Out of 78 germplasm of muskmelon (Cucumis melo L.), 67 germplasm (86%) survived against high salinity (13.82 ds/m) when screened at Benarpota, Satkhira, Khulna. These germplasm showed morphological variations in growth habit, leaf lobes, leaf pubescence, fruit shape, fruit ribs, fruit skin texture, flesh colour, flesh flavor, flesh texture, fruit splitting, fruit aroma, fruit size, seed coat colour, fruit skin colour at fully formed fruit and fruit skin colour at seed harvest maturity. The other qualitative characters, such as tendrils and flowering habit did not show morphological variations. Quantitative variations were observed in leaf length, leaf width, days to staminate flowering, days to pistillate flowering, fruit length, fruit width, fruit weight, number of fruits per plant, flesh thickness, number of seeds per fruit, days to fruit harvest and 1000-seed weight. Among the germplasm, BD-2255 and BD-9159 had no splitting of fruits. Therefore, these two germplasm can be selected for this trait. The characters, such as number fruits per plant and fruit weight exhibited highest number of fruits per plant (21) and maximum fruit weight (6.25 kg). These two characters should also be considered for improvement of muskmelon. Highest CV (%) was found in number of fruits per plants (36.35) followed by fruit weight (33.86).

Keywords: Muskmelon, germplasm, screening, salinity.

Introduction

Salinity is a serious environmental constraint to crop production in many parts of the world (Maranville *et al.*, 1993). Estimates for the extent of salinity damage vary from 25 to 50 percent of the worlds irrigated land (Postel, 1989; Adams and Hughes, 1990). In Bangladesh, about 2.83 million ha of land is affected by various degrees of salinity, and efforts are being made to bring the saline areas under cultivation (Begum *et al.*, 2000). Crop culture on such land thus becomes an important step by screening the salt tolerant cultivar (Begum *et al.*, 2000). Soil salinity has become a major factor limiting crop productivity worldwide, especially in arid and semi-arid regions. High salt concentration in the soil solution is bound to create high osmotic pressure in the root zone and reduce availability of water and nutrients to plants. Such conditions are known to affect plant physiological activities, which determine crop yield (Hebbara *et*

Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh.

al., 2003). Muskmelon is a minor but the most common fruit crop of cucurbitaceae family in Bangladesh. It is grown almost every districts of Bangladesh. Immature melons are used fresh in salads, cooked (soup, stew, curry, stir-fry) or pickled. Mature fruits are eaten fresh as a desert fruit, canned or used for syrup or jam, dehydrated slices (lightly processed) for short-term or moderate storage can be reconstituted, and the pressed juice can be canned. Fruit flesh is usually orange but sometimes green. Its flavour is aromatic. Monoecious and andro-monoecious are most common in muskmelon. Two major genes A and G control sex expression in muskmelon (Vijay, 1987). It grows well in optimum soil pH 6.3 to 6.8. Muskmelon is best stored at 3 to 5° C with a high relative humidity of 95%. It may be direct seeded or transplanted. Wide variations are present in muskmelon so special attention should be given to its improvement. In these circumstances, the present study was undertaken to evaluate the germplasm of muskmelon against salinity in natural crop management system at saline zones in Benarpota, Satkhira, Khulna to identify the tolerant ones.

Materials and Method

Seventy eight germplasm of muskmelon were planted on 28 February 2008 at Benarpota, Satkhira, Khulna for screening of germplasm against salinity. These germplasm were collected from different districts of Bangladesh (Table 1). The seedling of each germplasm was raised in poly bags. The 25 days old seedlings of each germplasm were planted in the field maintaining plot size 2.0m spacing between the plants. Two plants of each germplasm were maintained in single pit. Recommended fertilizer dose was applied. Urea 50 g, Muriate of Potash (MP) 105 g and Triple Super Phosphate (TSP) 80 g were applied in each pit as basal dose during final land preparation. The second dose of urea 50 g was applied after 35 days of planting. Five irrigations were given at different dates (5.03.2008, 19.03.2008, 26.03.2008, 5.04.2008, and 20.04.2008) during cropping period. Necessary intercultural operations were followed.

May 5 was the last date of fruit harvest. Within this time highest salinity level was recorded as 13.82 ds/m and the plants of each germplasm was in good condition. Crop duration of each germplasm was 88 days.

Both qualitative and quantitative observations were recorded according to IBPGR (International Board for Plant Genetic Resources) descriptors. Pertinent data on temperature (°C), rainfall (mm) and humidity (%) and salinity level (ds/m), soil moisture (%) and soil pH of Benarpota station is presented in Table 4 and 5, respectively.

Sl. No.GermplasmDistrictSl. No.GermplasmDistrict1BD-2255Kusthia40BD-2298Comil	
2 BD-2256 Kusthia 41 BD-2299 Comil	
3 BD-2257 Kusthia 42 BD-2300 Comil	
4 BD-2258 Kusthia 43 BD-2301 Comil	
5 BD-2259 Kusthia 44 BD-2302 Sirajga	
	•
	-
30	-
50	-
50	-
10 BD-2264 Kusthia 49 BD-2307 Sirajga 11 DD 2265 Kusthia 50 DD 2208 Sirajga	-
11 BD-2265 Kusthia 50 BD-2308 Sirajga 12 DD-2265 Kusthia 51 DD-2308 Sirajga	-
12 BD-2266 Kusthia 51 BD-2309 Sirajga	-
13 BD-2267 Kusthia 52 BD-2310 Sirajga 14 BD-2267 Kusthia 52 BD-2310 Sirajga	-
14 BD-2268 Kusthia 53 BD-2311 Sirajga	-
15 BD-2270 Chuadanga 54 BD-2312 Chittage	-
16 BD-2271 Chuadanga 55 BD-2313 Chittage	-
17 BD-2272 Chuadanga 56 BD-2314 Pabra	
18 BD-2273 Chuadanga 57 BD-2315 Pabra	
19BD-2275Chuadanga58BD-2316Pabra	
20 BD-2276 Faridpur 59 BD-2317 Pabra	
21 BD-2277 Faridpur 60 BD-2318 Naoga	on
22 BD-2280 Faridpur 61 BD-2319 Naoga	on
23 BD-2281 Faridpur 62 BD-2320 Naogae	on
24 BD-2282 Rajshahi 63 BD-2321 Naoga	on
25 BD-2283 Chittagong 64 BD-2322 Kusth	ia
26 BD-2284 Chittagong 65 BD-2323 Kusth	ia
27 BD-2285 Jamalpur 66 BD-7442 Jesson	e
28 BD-2286 Jamalpur 67 BD-8888 IPK-Gerr	nany
29 BD-2287 Mymensingh 68 BD-8889 Barish	al
30 BD-2288 Mymensingh 69 BD-9149 Kusth	ia
31 BD-2289 Mymensingh 70 BD-9151 Jamalp	ur
32 BD-2290 Tangail 71 BD-9154 Pabra	ì
33 BD-2291 Tangail 72 BD-9155 Pabra	a
34 BD-2292 Tangail 73 BD-9156 Sreep	ır
35 BD-2293 Tangail 74 BD-9157 Gazipu	ır
36 BD-2294 Tangail 75 BD-9158 Nator	e
37 BD-2295 Tangail 76 BD-9159 Chapainwa	ubganj
38 BD-2296 Tangail 77 BD-9160 Rajsha	•••
39 BD-2297 Tangail 78 T-307 Kusth	

Table 1. Sources or places of collection of 78 muskmelon germplasm.

Results and Discussion

Seventy eight germplasm of muskmelon (*Cucumis melo* L.) were planted in Benarpota, Satkhira, Khulna. Among them, 67 germplasm (86%) survived against high salinity (13.82 ds/m). The 8 germplasm viz. BD-2280, BD-2283, BD-2294, BD-2300, BD-2302, BD-2303, BD-2308, and BD-2319 died after 18 days at 8.43 ds/m salinity and 3 germplasm, such as BD-2286, BD-2311, and BD-2316 died after 32 days of planting at 12.85 ds/m.

Morphological characterization

Morphological variations of 67 musk melon germplasm for different characters are presented in Table 2. All the germplasm of muskmelon showed morphological variations for all the characters except tendrils and flowering habit. These two characters showed no morphological variations. All the germplasm had tendrils and monoecious flower in nature.

The highest variability was observed in fruit skin colour (at fully formed fruit) viz. green-19, light green-1, cream-3, orange-1, pink-4, grey-3, and black-35. In case of growth habit, bushy-18, intermediate-31, and prostrate-18 were found in the germplasm followed by fruit skin texture viz. smooth-37, grainy-8, finely wrinkled-1, shallowly wavy-5, netted-3 and with spines-13. For leaf lobes, no leaf lobes-10, shallow-12, intermediate-29 and deep leaf lobes-16 were observed. Among the germplasm, three types of intensity of leaf pubescences, such as glabrous-17, sparse-31, and dense-19 were found. Ellipsoid-2, oblong ellipsoid-48, globular-9, and stem-end tapered-5 for fruit shape were observed among the germplasm. In case of fruit ribs, no fruit ribs-4, superficial ribs-27 and deep fruit ribs-36 were recorded. Three types of flesh colour, such as white-25, yellow-3, and orange-39 were observed among the germplasm. Insipid-50, intermediate-11 and sweet-6 were found for flesh flavour. In case of flesh texture, smooth fruit-34 and grainy firm-33 were exhibited in the germplasm. For fruit splitting, no splitting-2, superficial-5 and deep splitting-60 was observed. Among the germplasm, no fruit aroma-48, external only-2, internal only-15 and both external and internal fruit aroma-2 were observed. In case of fruit skin colour (at seed harvest), cream-2, yellow-27, orange-3, grey-2 and black-33 were found among the germplasm. Different types of fruit size viz. small-6, medium-20 and large fruit-41 were observed in the germplasm. Some germplasm showed white-58 and orange-9 was recorded for seed coat colour.

Splitting of the muskmelon fruit is an important character for marketing. Due to splitting of fruit, it is difficult to transport from one place to another. In this study, two germplasm such as BD-2255 and BD-9159 were found of no splitting type. Therefore, these germplasm can be selected for improvement of muskmelon.

Growth habit	Leaf lobes	Leaf pubescence	Tendrils	Flowering habit	Fruit shap	pe
Bushy : 18	Absent : 10	Glabrous: 17	Present: 67	Monoecious: 67	Ellipsoid : 2	
Intermediate : 31	Shallow: 12	2 Sparse : 31			Oblong ellipso	oid : 48
Prostrate : 18	Intermediate :	29 Dense : 19			Globular	: 9
	Deep : 16				Stem-end tape	ered : 5
Fruit ribs	Fruit skin text	ure Flesh colour	Flesh flavour	Flesh texture	Fruit split	ting
Absent: 4	Smooth: 37	White : 25	Insipid : 50	Smooth fruit : 34	Not splittin	g:2
Superficial: 27	Grainy: 8	Yellow : 3	Intermediate : 11	Grainy firm : 33	Superficia	1:5
Deep: 36	Finely wrinkled	d: 1 Orange : 39	brange : 39 Sweet : 6		Deep : 60	
	Shallowly wav	y: 5				
	Netted : 3					
	With spines :	13				
Emito	****	Fruit skin colour	Fruit skin colour	Fruit size varia	hility Soud of	oat colour
Fruit aroma		(at fully formed fruit)	(at seed harvest)		ability Seed Co	
Absent : 48 Gree		Green: 19	Cream: 2	Small : 6	5 Whi	ite : 58
External only : 2	External only : 2 Light green : 1		Yellow : 27	Medium : 2	20 Ora	nge : 9
Internal only: 15		Cream: 3	Orange : 3	Large : 4	1	
Both external & internal : 2		Orange : 1	Grey: 2			
Dour external & mo			Black: 33			
Dour externar & ma		Pink : 4				
		Grey : 3				

 Table 2. Number of muskmelon germplasm under different classes in salinity condition.

Quantitative characterization

The quantitative variations were observed in days to staminate flower, days to pistillate flower, fruit length (cm), fruit width (cm), fruit weight (kg), number of fruits per plant, flesh thickness (cm), number of seeds per fruit, 1000-seed weight (g), days to 1st harvest and days to final harvest (Table 3). Days to staminate flower ranged from 21 (BD-2268 and BD-2281) to 57 (BD-2263, BD-2310 and BD-9151) days. In case of days to pistillate flower ranged from 26 (BD-2260) to 62 (BD-2263, BD-2264, BD-2287, BD-2310 and BD-9151) days. The germplasm BD-2268 (52 days) and BD-2255 (55 days) were found as early variety on the basis of harvesting time of the fruit. These two germplasm required only 52 and 55 days to harvest, respectively. While the germplasm BD-2263 and BD-2287 (85 days), and BD-8889 (83 days) were observed as late variety on the basis of days to pistillate flowering and harvesting time of the fruit.

Mean, range, standard deviation and co-efficient of variation

Range, mean, standard deviation and co-efficient of variation are shown in Table 3. Wide variations were observed for all the characters except flesh thickness, days to 1st harvest, days to final harvest and 1000-seed weight (Table 3). These four characters exhibited the minimum range of estimates with a general mean indicating narrow range of variability.

Maximum range of variation were found in days to staminate flower (21-57 days), days to pistillate flower (26-62 days), fruit length (12.60-50.32 cm), fruit width (23.20-52.00 cm), fruit weight (1.40-6.25 kg), number fruits per plant (4-21), number of seeds per fruit (345-815), 1000-seed weight (g), and days to 1st harvest (52-85 days) indicating remarkable variations were present among the germplasm. Highest number of fruits per plant (21) was recorded in BD-2268 and second highest (20) in BD-2291. Highest CV% was observed in number of fruits per plant (36.35) followed by fruit weight (33.86).

The number of fruits per plant and fruit weight exhibited the maximum range of variation (4-21 and 1.40-6.25) with a mean of 10.46 and 2.75, respectively. Characters, which showed high range of variation, should be given priority in the selection (Vijay, 1987). While the range of variation was low for the characters indicated narrow range of variability among the germplasm and suggested that selection would not be effective for these traits. Among the germplasm, BD-2255 and BD-9159 were found as non-splitting type. Therefore, these two germplasm can be selected for this trait. In addition, the characters such as number fruits per plant and fruit weight should also be considered for improvement of muskmelon. All the 67 germplasm were rated as tolerant against the salinity level of 13.82 ds/m.

Samily Co	iuiuoii (13.64	2 us/m).			
Character	No. of observation	Range	Mean	Sd.	CV%
Days to staminate flower	67	21-57	41.34	12.07	29.19
Days to pistillate flower	67	26-62	46.37	11.69	25.22
Fruit length (cm)	67	12.60-50.32	29.57	6.36	21.49
Fruit width (cm)	67	23.20-52.00	36.08	6.17	17.09
Fruit wt (kg)	67	1.40-6.25	2.75	0.93	33.86
No. of fruits/plant	67	4-21	10.46	3.80	36.35
Flesh thickness	67	1.80-3.20	2.56	0.30	11.82
No. of seeds/fruit	67	345-815	518.73	108.47	20.91
1000-seed wt (g)	67	35.00-63.00	48.51	5.39	11.13
Days to 1 st harvest	67	52-85	68.64	7.75	11.29
Days to final harvest	67	70-88	77.75	5.77	7.42

Table 3. Range, mean, standard deviation and CV% of muskmelon in
salinity condition (13.82 ds/m).

Table 4. Monthly temperature (°C),	, rainfall (mm) ai	nd humidity (%) during
cropping period.		

Month	Tempera	ture (°C)	Rainfall (mm)	Humidity (%)	
Monui	Maximum	Minimum	Kannan (mm)		
January	25.26	11.83	0	304.27	
February	27.10	16.86	112	313.12	
March	30.67	18.70	18	275.39	
April	34.29	24.83	121	298.02	
May	35.50	26.27	30	289.82	

Table 5. Date wise salinity	(ds/m), soil	moisture	(%)	and	soil pH	during
cropping period.						

- I I	81		
Date	Salinity (ds/m)	Soil moisture (%)	Soil pH
28.02.2008	4.50	10.00	7.30
10.03.2008	8.24	9.75	6.70
25.03.2008	8.90	21.85	6.50
10.04.2008	8.52	19.35	7.30
24.04.2008	5.10	7.00	7.20
10.05.2008	13.82	7.50	7.00
25.05.2008	12.67	16.00	6.80

References

- Adams, W.M and F.M.R Hughes. 1990. Irrigation development in desert environments. In: Techniques for Desert Reclamation. AS. Goudie (ed.). John Wiley, New York. pp. 35-160.
- Begum, F., Bimal Chandra Sarker and Sirajul Hoque. 2000. Effects of salinity on growth and accumulation of Na⁺, K⁺ and Cl⁻ in Maize (*Zea mays*). *Dhaka Uni. J. Biol. Sci.* **9** (2): 193-196.
- Hebbara, M., G. R. Rajakumar, G. Ravishankar and C. V. Raghavaiah. 2003. Effect of salinity stress on seed yield through physiological parameters in sunflower genotypes. *Hella* 26. Nr.39. pp.155-160.
- Maranville, J.W., B.V. Baligar, R.R. Duncan & J.M. Yohe (eds.). 1993. Proc. Workshop on Adaptation of Plants to Soil Stresses. p. 117-132. *In: INTSORMIL*. Pub. No. 94-2, Univ. of NE, Lincoln, NE, August 1-4, 1993.
- Postel, S. 1989. Water for agriculture: Facing the limits. *Worldwatch Paper 93*. Worldwatch Institute, Washington DC.
- Vijay, O. P. 1987. Genetic variability, correlation and path analysis in muskmelon (*Cucumis melo* L.). *Indian J. Hort.* 44 (4): 233-238.