Femoral Neck Shaft Angle of Adult Bangladeshi Male
Shakera Akter¹, Shamim Ara², ABMG Kibria³, Farzana Begum⁴, Auni Kamal⁵

Abstract

Background: Femoral neck shaft angles (FNSAs) are an important measure for the assessment of hip and planning of operations in the upper part of femur. From a bio-mechanical standpoint bone geometry is related to the body weight. Geometric parameters like the diameter of the femoral head and neck, the length of neck and the femoral neck shaft angle are determinant factors of osteoporotic patients.

Objective: The study was carried out to measure the right and left femoral neck shaft angles from radiographs and to provide a baseline data of femoral neck shaft angle of Bangladeshi adult male so that adequate planning and preoperative selection of orthopaedic implant for surgeries involving femoral neck can be taken.

Materials and method: The study was a cross-sectional analytical type which involved measuring femoral neck shaft angles (FNSAs) of anterior posterior views of 25 male pelvis, showing the hip joint and proximal part of femur of both sides. Radiographs of adult male pelvis commented normal by the radiologist were taken as study materials. Femoral neck shaft angles (FNSAs) were measured by goniometer.

Results: Male neck shaft angle of the femur (FNSAs) revealed that there were no significant difference in FNSAs between right and left side.

Keywords: Femur, neck-shaft-angle (FNSA).

Introduction:
The femur is the largest and the strongest bone in the body. The hip joint is formed by the head of the femur and acetabulum. The angle is known by many names including neck shaft angle (NSA), collodiaphyseal angle (CDA), diaphysio-femoral angle, angle of inclination or Mikuliczangle and caputcollum - diaphyseal angle¹. This angle is necessary to enable the femoral shaft to swing clear of the pelvis during mobility². The neck shaft angle varies with age, stature and width of the pelvis. When this angle is >135° the condition is known as coxavalga. When the angle is <120° it is known as coxavara. The angle of femoral neck reduces with aging. In early infancy the neck shaft angle is about 150°, in childhood 140, in adult it is about 125° and in elderly about 120°³.

Anatomical study of femur serves helpful data to understand different aspects of clinical disease condition, including fixation of femoral neck fracture, changes in osteoporosis, associated congenital anomaly as well as medicolegal cases⁴. It is also helpful in designing and bioengineering construction of orthopaedic implants and hip prosthesis.

Material and Methods:
A cross-sectional analytical study was carried out for measuring the neck shaft angles from radiograph of adult male pelvis. The radiographs were collected from different medical college.
hospital of Dhaka city. X-ray anterior-posterior (AP) view of the pelvis showing both hip joints and upper femora were selected. The radiographs selected were those with no visible pathology and were commented as normal by the radiologist. The measurement were carried out with the aid of viewing box and single handheld 360° goniometer. The measurement were done by two researchers and the average value was recorded as the final value.

To measure the femoral neck shaft angle, longitudinal axis of neck and longitudinal axis of shaft were determined.

A. Longitudinal axis of neck: To find out the longitudinal axis of neck lowest limit of head circumference was determined then midpoint of intertrochanteric line was determined. Line joining the two points is neck axis. Then neck axis was extended to cut shaft axis. (Fig 1).

B. Longitudinal axis of shaft: Is the line joining the midpoint of the shaft below the lesser trochanter up to the greater trochanter. (Fig 1).

C. Femoral neck shaft angle (FNSA): Intersection between the longitudinal axis of neck and the longitudinal axis of shaft (Fig.-1).

Ethical Clearance:
This study was approved by the Ethical Review Committee of Dhaka Medical College, Dhaka

Results:
A total 40 NSAs were analyzed from 25 adult male patients. The value of NSA of male ranges from 115° to 145° with a mean of 131.99°±5.02° the mean value for the right and left side for adult male were 132.05°±6.62° and 131.94°±6.43° respectively (Table-I).

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lowest value (°)</th>
<th>Highest value (°)</th>
<th>Modal NSA (°)</th>
<th>Mean±SD value (°)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right NSA</td>
<td>125</td>
<td>136</td>
<td>130</td>
<td>132.05±6.62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Left NSA</td>
<td>124</td>
<td>136</td>
<td>130</td>
<td>131.94±6.43</td>
<td></td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Sl.no</th>
<th>Authors</th>
<th>Year</th>
<th>Sample size</th>
<th>Population</th>
<th>Method</th>
<th>FNSAMean ±SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M lequesne</td>
<td>2004</td>
<td>112</td>
<td>French</td>
<td>X-ray</td>
<td>132.8°±4.4</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>PF Umebese</td>
<td>2005</td>
<td>110</td>
<td>Nigerian</td>
<td>X-ray</td>
<td>132.8°±4.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M Inam</td>
<td>2011</td>
<td>70</td>
<td>Pakistan</td>
<td>X-ray</td>
<td>134°±5.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Present study</td>
<td>2017</td>
<td>25</td>
<td>Bangladeshi</td>
<td>X-ray</td>
<td>132.05°±4.4°</td>
<td></td>
</tr>
</tbody>
</table>
Discussion:
The studies on neck shaft angles have been done by different authors in different parts of the world. Variations in neck shaft angle has been found and this can be attributed to varying level of activity, genetics, race, diet and lifestyle.\(^5,6\) In the present study the mean value NSAs were 132.05± 6.62° and 131.94° ±6.43° on the right and left side respectively. There were no significant differences on the right and left NSA in the present study which was similar to the findings of most of the other author (table-II).

The importance of NSAs lies in diagnosis, treatment of various orthopaedics condition like developmental dysplasia, osteoarthritis of hip, slipped capital femoral epiphysis and various valgus or varus osteotomies\(^7,8\). It is hoped that these morphometric finding on NSA could be of some use possibly in designing prosthesis for Bangladeshi population.

References: