Renal Tuberculosis Presented as Emphysematous Pyelonephritis: A Case Report

N Mahmood¹, MR Hassan², MMR Siddiqui³, SI Shumi⁴

ABSTRACT

Emphysematous pyelonephritis (EPN) is an acute necrotizing infection of the kidney which is characterized by presence gas in the renal parenchyma. Uncontrolled diabetes mellitus and obstruction of the urinary tract are the main predisposing factors and Mycobacterium tuberculosis is a rare causative pathogen. One of the major health problem faced particularly by the developing world since ages is that of tuberculosis (TB). Genitourinary tuberculosis (GUTB) is the second most common extra-pulmonary TB, with kidney being the most frequent site of infection. We herein report a case of a patient with uncontrolled diabetes mellitus who was admitted through emergency department with symptoms of pyelonephritis. Imaging revealed the gas in the renal parenchyma establishing the diagnosis and as we found sterile pyurea we searched for Mycobacterium tuberculosis. GUTB was diagnosed and was treated successfully with anti TB drugs. EPN is a medical emergency and once diagnosed, attention must be paid to avoid high mortality rates.

Key Words: Emphysematous pyelonephritis, Renal tuberculosis, CT scan, X-Ray KUB.

Introduction

Emphysematous pyelonephritis (EPN) is a severe, acute necrotizing infection with formation of gas in the collecting system, renal parenchyma and perirenal tissues. It is a life threatening condition with a high mortality rate. It predominantly affects female diabetics and can occur in patients with Type I and Type II diabetes. Rare cases have been reported in non diabetics who have other contributing factors such as immunsuppression, urinary tract obstruction secondary to stones, tumor or sloughed papilla.¹ Rarely it has been seen in patients with autosomal dominant polycystic kidney disease.²,³ The factors that predispose to EPN in diabetics may include uncontrolled diabetes mellitus, high level of glycosylated haemoglobin and impaired host immune mechanism. The majority of cases reported are unilateral, occur in patients with diabetes mellitus or urinary tract obstruction, and more commonly affect on the left kidney.⁴,⁵ One of the major health problem faced particularly by the developing world since ages is that of tuberculosis (TB).⁶ Genitourinary tuberculosis (GUTB) is the second most common extra-pulmonary TB, with kidney being the most frequent site of infection.⁶ We report a case of Emphysematous pyelonephritis (EPN) with uncontrolled diabetes mellitus later diagnosed as a case of renal tuberculosis.

Case Report

A 85 years old Bangladeshi male patient hailing from Islamburg, Dhaka got admitted to Anwer Khan Modern Medical College Hospital through Emergency Department on 13.6.19 at 8.30 pm with the complaints of fever and cough for 15 days and...
difficulty in micturition, frequency, urgency, high
colour urine and loin pain for 4 days. He had no
previous significant history. He is known a case of
Diabetes mellitus for 5 years. On clinical
examination temperature was raised and renal angle
tenderness was present on left side. He had H/O
partial gastrectomy with gastrojejunostomy 30 years
back. After all lab investigations(Table 1) he was
diagnosed as a case of Renal tuberculosis leading to
Emphysematous pyelonephritis with Pulmonary
tuberculosis with Diabetes mellitus with mild renal
imairment. Anti TB drugs were started and Insulin
was added to control diabetes. Patient started
recovering clinically and follow up X-ray after 1
and half months showed, no gas in the renal area and
in Gene X-pert of urine and sputum, MTB not
detected. The patient was discharged from the
hospital with anti TB drugs for 8 months and Insulin
and advised to come for follow up in the Out Patient
Department.

Table - I: The Patient’s laboratory results

<table>
<thead>
<tr>
<th></th>
<th>CBC (Complete Blood Count)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td></td>
<td>Erythrocyte Sedimentation Rate</td>
</tr>
<tr>
<td></td>
<td>TC of White Blood Cell</td>
</tr>
<tr>
<td></td>
<td>Neutrophils</td>
</tr>
<tr>
<td></td>
<td>Lymphocytes</td>
</tr>
<tr>
<td></td>
<td>Monocytes</td>
</tr>
<tr>
<td></td>
<td>Eosinophils</td>
</tr>
<tr>
<td></td>
<td>Basophils</td>
</tr>
<tr>
<td></td>
<td>Red Blood Cells (RBC)</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
</tr>
<tr>
<td></td>
<td>Packed Cell Volume</td>
</tr>
<tr>
<td></td>
<td>Mean Corpuscular Haemoglobin</td>
</tr>
</tbody>
</table>

2. Blood C/S: No growth

3. Urine R/E
 - Albumin: Trace
 - Sugar: ++
 - Push Cell: Plenty/HPF (High Power Field)
 - RBC: 2-3/HPF

4. Urine C/S: No growth

5. Serum Creatinine: 1.84 mg/dl

6. Blood Urea: 38 mg/dl

7. Serum Electrolytes
 - Sodium (Na+): 126 mmol/L
 - Potassium (K+): 2.8 mmol/L
 - Chloride (Cl-): 96 mmol/L
 - Bicarbonate (HCO3+): 26 mmol/L

8. SGPT: 69 U/L
9. Serum Bilirubin: 0.40 mg/dl
10. Serum Alkaline Phosphatase: 103 U/L
11. GGT: 61 U/L
12. Serum Total Protein: 60 gm/L
13. Serum Albumin: 24 gm/L
14. Serum Globulin: 36 gm/L
15. Serum Magnesium: 2.03 mmol/L
16. Serum Uric Acid: 2.2 mg/dl
17. HbA1C: 9.1%
18. Serum Vitamin D3: 10.3 ng/ml
19. Parathyroid Hormone: 136.90 pg/ml
20. Plain X-ray KUB: Gas filled left renal region consistent with
 left Emphysematous Pyelonephritis
 (Fig: 1)
 Ill defined mixed
21. Ultra-sonogram of whole abdomen
 - Echogenic left kidney
 - with evidence of
 - multiple air pockets near
 - the lower pole
 (Emphysematous
 Pyelonephritis should be
 excluded), Chronic
 - Cystitis (UTI) evidence
 - by thick and irregular
 - bladder wall (Fig: 2, 3)
22. CT Scan of Renal Urogram
 - Non excretory left
 - kidney with
 - Emphysematous
 Pyelonephritis and
 chronic prostatitis (Fig:
 4, 5)
23. HRCT Chest
 - Suggestive of bilateral
 interstitial lung disease,
 intra-pulmonary
 fibrosis. Bilateral
 pulmonary
 emphysematous change.
 - Left-sided pleural
 effusion. Sub
 centimetric mediastinal
 lymph nodes. (Fig: 6, 7)
Renal Tuberculosis Presented as Emphysematous

24. Fibre optic bronchoscopy

25. Bronchoalveolar lavage

Cytology
Cytospin smears show mostly RBCs along with polymorphs, lymphocytes and histiocytes including carbon laden histiocytes. No malignant cell is seen. C/S-No Growth Fungus (Yeast/mould)-Not found Negative

MTB Detected

26. Mantoux Test

27. Urine for Gene X-pert test

28. Sputum for Gene X-pert test

29. Pleural Fluid

ADA (Adenosine deaminase)
Biochemical-Protein
Sugar

15U/L
28 gm/L
230 mg/dl

Table - II: Types of emphysematous pyelonephritis

Type-I: Characterized by parenchymal destruction with either absence of fluid collection of presence of streaky or mottled gas.

Type-II: Characterized as either renal or perirenal fluid collections with bubbly or loculated gas or gas in the collecting system.

Table-III: Classification of emphysematous pyelonephritis

Class 1: Gas confined to the collecting system

Class 2: Gas confined to the renal parenchyma alone

Class 3A: Perinephric extension of gas or abscess

Class 3B: Extension of gas beyond the Gerota fascia

Class 4: Bilateral EPN or EPN in a solitary kidney.
Discussion

EPN was first described in 1898, in association with pneumaturia as a result of gas forming pathogens. EPN occurs more than 90% of cases in diabetics with poor glycemic control. Other predisposing factors include urinary tract obstruction, polycystic kidneys, end stage renal disease and immunosuppression. Pathogenesis of EPN remains unclear, however four factors have been implicated, including gas forming bacteria, high tissue glucose level (favoring rapid bacterial growth), impaired tissue perfusion (Diabetic nephropathy) leading to further compromise of regional oxygen delivery in the kidney resulting in tissue ischemia and a defective immune response due to impaired vascular supply. Intra-renal thrombus and renal infarctions have been claimed to be the predisposing factors in non-diabetic patients.

The main bacteria causing emphysematous pyelonephritis are the classical organism of urinary tract infection. The most common is Escherichia coli. Other bacteria include Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa. The mean patient age is 55 years old and women outnumber men probably due to their increase susceptibility to urinary tract infections. The left kidney is more frequently involved than the right one. All the cases reported so far were female patients. But we reported a male patient which was similar to the report of Rafaelidis V et al. In most of the case reported patients age were around 60 years. But our patient was 85 years old which was similar to that reported by Ali M and Barlas NB11. E coli, Klebsiella and Pseudomonas were the common organisms. But we found a case of EPN due to invasion of Mycobacterium tuberculosis which was different from other studies.

Clinical manifestation of EPN appear to be similar to those encountered in classical cases of upper urinary tract infections. According to Huang and Tseng fever was encountered in 79% of the patients, abdominal and back pain in 71%, nausea and vomiting in 17%, lethargy and confusion in 19%, dyspnea in 13% and shock in 29%. However, anaerobic infection is extremely uncommon and data appears to be compatible with those generally reported in the literature.

Various imaging techniques can be used to detect gas within the genitourinary system. Ultrasound is insensitive for the diagnosis of renal gas, but useful in diagnosing urinary tract obstruction. It is also a readily available, noninvasive method that is quite useful in the hands of experienced practitioners. Non-contrast CT scan remains the diagnostic method of choice. In addition to showing the presence of gas, it defines the extent of the infection and can diagnose any obstruction. Two staging systems based on CT findings, have been proposed for prognostic and therapeutic reasons. Wan et al. described two types where type-I had a mortality rate of 69% and that of type-II was 18% (Table-2). Huang and Tseng defined four classes (Table-3).

The treatment of EPN remains controversial. According to some investigators vigorous resuscitation, administration of antimicrobial agents and control of blood glucose and electrolytes should be followed by immediate nephrectomy. Huang and Tseng proposed certain therapeutic modalities based upon their radiological classification system. For extensive EPN (Classes 3 and 4) without signs of organ dysfunction antibiotic therapy combined with percutaneous catheter placement should be attempted. But nephrectomy should be promptly attempted in patients with extensive EPN and signs of organ dysfunction. Risk factors indicating poor prognosis include thrombocytopenia, acute renal failure, disturbance of consciousness and shock. Flagas et al suggested that increased serum creatinine level, disturbance of consciousness and hypotension may need further research to confirm their potential use as risk factors for fetal outcome. Furthermore, their meta-analysis suggest that conservative treatment alone is a risk factor for advance outcome, although one must take into consideration the different scheme, used by the authors of the studies included, when defining terms such as conservative treatment.

Conclusion

In high risk groups, such, as diabetics, presenting with persistent upper urinary tract infection semiology that does not resolve with proper antibiotic treatment, the presence of a severe renal infection should be considered. CT guided percutaneous drainage or open drainage, along with antibiotic treatment, may be a reasonable alternative to nephrectomy. Suspecting genitourinary tuberculosis is very important in a case of emphysematous pyelonephritis. In such cases,
particularly in a high endemic area for tuberculosis, therapeutic trial of anti-tubercular drugs may also be considered to avoid unnecessary surgical intervention and end stage renal disease.

Conflict of interest: none

References

